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CIP?4CP?, Complex surfaces, Algebraic surfaces e.g. degree d hypersurfaces
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CP24CP?, Complex surfaces, Algebraic surfaces e.g. degree d hypersurfaces
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invariant. @ is symmetric and unimodular (Poincaré duality).
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» Let X be an oriented smooth closed real 4-manifold. E.g. S*, Yo X Xp,
CP24CP?, Complex surfaces, Algebraic surfaces e.g. degree d hypersurfaces
in CP3,....

> Intersection form Q: H*(X,Z) x H*(X,Z) — Z is an important topological
invariant. @ is symmetric and unimodular (Poincaré duality).

» @ extends to a non-degenerate symmetric bilinear from on H?(X,R) of rank
by(X) = b™(X) + b~ (X), where b*(X) := # of £ eigenvalues of Q.
Signature of X: o(X) = b"(X) — b~ (X).
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» Let X be an oriented smooth closed real 4-manifold. E.g. S Yo X Xp,
CP24CP?, Complex surfaces, Algebraic surfaces e.g. degree d hypersurfaces
in CP3,....

> Intersection form Q: H*(X,7Z) x H*(X,Z) — Z is an important topological
invariant. @ is symmetric and unimodular (Poincaré duality).

> @ extends to a non-degenerate symmetric bilinear from on H?(X,R) of rank
by(X) = b™(X) + b~ (X), where b*(X) := # of £ eigenvalues of Q.
Signature of X: o(X) = b"(X) — b~ (X).

> There is a classification for unimodular lattices by means of the rank,
signature, the parity of @, and (in)definiteness, etc.
For indefinite lattices the classification is complete: m1 @ n(—1) (Odd) or
mH @ nEg (Even).
For definite lattices it is more involved; finitely many types in each rank but
only known up to some ranks.
e.g. The case d = 4 above is an example of a K3 surface (compact, simply
connected complex surface with zero 1st Chern class). In this case

Q=3H®2(—E).
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> (Milnor) The oriented homotopy type of a simply connected, compact,
oriented 4-manifold is determined by the type of Q.
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> (Milnor) The oriented homotopy type of a simply connected, compact,
oriented 4-manifold is determined by the type of Q.

» (Freedman) Up to homeomorphism, there is a unique simply connected,
compact, oriented 4-manifold with each even type of @, and exactly two for
each odd type. (= 4-dimensional topological Poincaré conjecture by taking
the lattice to be 0.)
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> (Milnor) The oriented homotopy type of a simply connected, compact,
oriented 4-manifold is determined by the type of Q.

> (Freedman) Up to homeomorphism, there is a unique simply connected,
compact, oriented 4-manifold with each even type of @, and exactly two for
each odd type. (= 4-dimensional topological Poincaré conjecture by taking
the lattice to be 0.)

» Motivation of Donaldson invariants: Classification of smooth 4-manifolds up to

diffeomorphism. In dimension 4 one can have infinitely many diffeomorphism
structures on a fixed homeomorphism type.
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> (Milnor) The oriented homotopy type of a simply connected, compact,
oriented 4-manifold is determined by the type of Q.

> (Freedman) Up to homeomorphism, there is a unique simply connected,
compact, oriented 4-manifold with each even type of @, and exactly two for
each odd type. (= 4-dimensional topological Poincaré conjecture by taking
the lattice to be 0.)

» Motivation of Donaldson invariants: Classification of smooth 4-manifolds up to

diffeomorphism. In dimension 4 one can have infinitely many diffeomorphism
structures on a fixed homeomorphism type.

> (Donaldson) The only negative definite forms realized by smooth, simply
connected, closed, oriented 4-manifolds are n(—1).
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> (Milnor) The oriented homotopy type of a simply connected, compact,

oriented 4-manifold is determined by the type of Q.

> (Freedman) Up to homeomorphism, there is a unique simply connected,
compact, oriented 4-manifold with each even type of @, and exactly two for
each odd type. (= 4-dimensional topological Poincaré conjecture by taking
the lattice to be 0.)

» Motivation of Donaldson invariants: Classification of smooth 4-manifolds up to

diffeomorphism. In dimension 4 one can have infinitely many diffeomorphism
structures on a fixed homeomorphism type.

> (Donaldson) The only negative definite forms realized by smooth, simply
connected, closed, oriented 4-manifolds are n(—1).

> (Donaldson) If @ = mH @ n(—Eg) is realized by a smooth, simply
connected, closed, oriented 4-manifold and n > 0 then we must have m > 3.

E.g. for the K3 surface Q = 3H ®2(—Eg).
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> (Milnor) The oriented homotopy type of a simply connected, compact,

oriented 4-manifold is determined by the type of Q.

> (Freedman) Up to homeomorphism, there is a unique simply connected,
compact, oriented 4-manifold with each even type of @, and exactly two for
each odd type. (= 4-dimensional topological Poincaré conjecture by taking
the lattice to be 0.)

» Motivation of Donaldson invariants: Classification of smooth 4-manifolds up to

diffeomorphism. In dimension 4 one can have infinitely many diffeomorphism
structures on a fixed homeomorphism type.

> (Donaldson) The only negative definite forms realized by smooth, simply
connected, closed, oriented 4-manifolds are n(—1).

> (Donaldson) If @ = mH @ n(—Eg) is realized by a smooth, simply
connected, closed, oriented 4-manifold and n > 0 then we must have m > 3.

E.g. for the K3 surface Q = 3H ®2(—Eg).

> (Donaldson) For any simply connected complex surface S with 6(S) > 3
there exists an oriented smooth closed 4-manifold homotopy equivalent to S
but not diffeomorphic to any complex surface.
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> (Milnor) The oriented homotopy type of a simply connected, compact,
oriented 4-manifold is determined by the type of Q.

> (Freedman) Up to homeomorphism, there is a unique simply connected,
compact, oriented 4-manifold with each even type of @, and exactly two for
each odd type. (= 4-dimensional topological Poincaré conjecture by taking
the lattice to be 0.)

» Motivation of Donaldson invariants: Classification of smooth 4-manifolds up to

diffeomorphism. In dimension 4 one can have infinitely many diffeomorphism
structures on a fixed homeomorphism type.

> (Donaldson) The only negative definite forms realized by smooth, simply
connected, closed, oriented 4-manifolds are n(—1).

> (Donaldson) If @ = mH @ n(—Eg) is realized by a smooth, simply
connected, closed, oriented 4-manifold and n > 0 then we must have m > 3.

E.g. for the K3 surface Q = 3H ®2(—Eg).

> (Donaldson) For any simply connected complex surface S with 6(S) > 3
there exists an oriented smooth closed 4-manifold homotopy equivalent to S
but not diffeomorphic to any complex surface.

> (Quote from Marefio’s notes) The correlation function of the observables of
twisted N/ = 2 Yang-Mills theory is precisely the corresponding Donaldson
Invariant.
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> Let G be a Lie group with the Lie algebra g. In this talk G = SU(2) or
G = S0(3).

» If P — X is a principal G-bundle and p: G — GL(V) is a representation one
can associate a vector bundle E := P x¢ V — X with fiber V. For example,
the adjoint bundle ad P — X is the bundle associated to the adjoint
representation p: G — GL(g).
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> Let G be a Lie group with the Lie algebra g. In this talk G = SU(2) or

G = S0(3).

» If P — X is a principal G-bundle and p: G — GL(V) is a representation one
can associate a vector bundle E := P x¢ V — X with fiber V. For example,
the adjoint bundle ad P — X is the bundle associated to the adjoint
representation p: G — GL(g).

Three equivalent ways of thinking of a connection on P:

1) A 1-form A on P with values in g, i.e. Ae QY(P,g), which is invariant
under the action of G on P and the adjoint action of G on g, and restricts to
the canonical right invariant from on each fiber of P.

2) A choice of a field of G-invariant horizontal subspaces Hx — Tp that are
transversal to the fibers of P: Tp = Ha® Tp)x.

3) As a covariant derivative V4: Q%(X, E) — QY(X, E).

(satisfying the Leibniz rule: Va(fo) = df ® o + fV a(o) for any section

o€ Q% X, E) and function f € Q°(X).)
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> The difference of two connections V4 — V 4 is a tensor i.e. an element of
Q(X,ad P) by viewing the adjoint bundle ad P as a subbundle of End E.
Conversely, V4 + a is again a connection for any a € Q}(X,ad P) , where
Q(X,ad P) acts via the contraction

Q%X,E) x QY(X,End E) — QY(X, E).

This shows that A, the space of all connections on P, is an infinite
dimensional affine space modeled on Q!(X,ad P).
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> The difference of two connections V4 — V 4 is a tensor i.e. an element of
Q(X,ad P) by viewing the adjoint bundle ad P as a subbundle of End E.
Conversely, V4 + a is again a connection for any a € Q}(X,ad P) , where
Q(X,ad P) acts via the contraction

Q%X,E) x QY(X,End E) — QY(X, E).

This shows that A, the space of all connections on P, is an infinite
dimensional affine space modeled on Q!(X,ad P).

» Curvature of a connection: Fy:= V40 V,e Q%(X,adP).
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> The difference of two connections V4 — V 4 is a tensor i.e. an element of
Q(X,ad P) by viewing the adjoint bundle ad P as a subbundle of End E.
Conversely, V4 + a is again a connection for any a € Q}(X,ad P) , where
Q(X,ad P) acts via the contraction

Q%X,E) x QY(X,End E) — QY(X, E).

This shows that A, the space of all connections on P, is an infinite
dimensional affine space modeled on Q!(X,ad P).

» Curvature of a connection: Fs:= V0 V4e Q%(X,adP).

» Gauge group: G := Aut E. It is an infinite dimensional Lie group with the Lie
algebra Q°%(X,ad P).
G acts on A by the rule

VueG,0e Q(X,E) Vymo =uValu'o).
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> Now suppose X is equipped with a Riemannian metric g and a volume form w.
This gives a Hodge operator x: H*(X,R) — H?(X,R) characterized by

a A *B = g(a,ﬂ)w.
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> Now suppose X is equipped with a Riemannian metric g and a volume form w.
This gives a Hodge operator x: H*(X,R) — H?(X,R) characterized by

a A *B = g(a,ﬂ)w.

> |t satisfies > = 1, so the only possible eigenvalues are 41, and in fact
b*(X) = # of +1-eigenvalues. The eigenvectors of 1 are called SD forms, and
the eigenvectors of -1 are called ASD forms.
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> Now suppose X is equipped with a Riemannian metric g and a volume form w.
This gives a Hodge operator x: H*(X,R) — H?(X,R) characterized by

a A *6 = g(a,ﬂ)w.

> It satisfies x> = 1, so the only possible eigenvalues are +1, and in fact
b*(X) = # of +1-eigenvalues. The eigenvectors of 1 are called SD forms, and
the eigenvectors of -1 are called ASD forms.

> The splitting Q2(X) into Q%*(X) naturally extends to the splitting of
Q%(X,ad P) into Q**(X,ad P). So Fa = F; + F,.
ASD connection: A connection A is called ASD if F; = 0.
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> Now suppose X is equipped with a Riemannian metric g and a volume form w.
This gives a Hodge operator x: H*(X,R) — H?(X,R) characterized by

a A *6 = g(a,ﬂ)w.

> It satisfies x> = 1, so the only possible eigenvalues are +1, and in fact
b*(X) = # of +1-eigenvalues. The eigenvectors of 1 are called SD forms, and
the eigenvectors of -1 are called ASD forms.

> The splitting Q2(X) into Q%*(X) naturally extends to the splitting of
Q%(X,ad P) into Q**(X,ad P). So Fa = F; + F,.
ASD connection: A connection A is called ASD if F; = 0.

> Importance: When G = SU(2) and ¢,(E) > 0 ASD connections minimize the
Yangs-Mills functional Syy = {, |Fal* = §, [F4|* + §, [FA %
This is because on the Lie algebra of skew adjoint trace free matrices
Tr(&%) = —|¢)? and so 872y (E) = §, Tr(F2) = Sy |Fal? = Sy [FA P is a
lower bound of Sy and it is achieved if and only if Ais ASD.
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> Let E be either a complex rank 2 SU(2)-bundle or a real rank 3 SO(3)-bundle.
In the former case E is classified by its second Chern class ¢;(E) and in the
latter case by its first Pontriagin class p1(E) and the second Stiefel-Whitney
class wy(E). We will concentrate on the former case.

Let ¢; := c1(E) and ¢ := (E) € HY(X,Z) = 7.
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> Let E be either a complex rank 2 SU(2)-bundle or a real rank 3 SO(3)-bundle.
In the former case E is classified by its second Chern class ¢;(E) and in the
latter case by its first Pontriagin class p1(E) and the second Stiefel-Whitney
class wy(E). We will concentrate on the former case.
Let ¢; := c1(E) and ¢ := (E) € HY(X,Z) = 7.

» Let A" < A be the subspace of irreducible connections, i.e. there are no

decompositions E = L1 D Ly and V4 = V4, @ Vyu,; let
Ng(c1, ) := {Ae A" | Ais ASD}/G.
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> Let E be either a complex rank 2 SU(2)-bundle or a real rank 3 SO(3)-bundle.

In the former case E is classified by its second Chern class ¢;(E) and in the

latter case by its first Pontriagin class p1(E) and the second Stiefel-Whitney
class wy(E). We will concentrate on the former case.
Let ¢; := c1(E) and ¢ := (E) € HY(X,Z) = 7.

> Let A* < A be the subspace of irreducible connections, i.e. there are no

decompositions E = L1 D Ly and V4 = V4, @ Vyu,; let
Ng(c1, ) := {Ae A" | Ais ASD}/G.

> Theorem: If g is generic N;(c1, o) is a smooth oriented manifold of
dimension d = 8¢, — 2¢; — 3(1 — by (X) + b*(X)).
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> Let X be a projective algebraic surface with an ample divisor H, Fubini-Study
metric g, and Kahler form w. Then

AT (X) =Re (NP(X) @A X)) ®Rw, A (X) =w" = AV(X).
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> Let X be a projective algebraic surface with an ample divisor H, Fubini-Study
metric g, and Kahler form w. Then

AT (X) =Re (NP(X) @A X)) ®Rw, A (X) =w" = AV(X).

> In this case V4 = da + 04 according to QY(X, E) = QY(X, E) @ Q%(X, E)

and
2

AisASD = (1) 0,=0, (2)03=0,F4Anw=0.
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> Let X be a projective algebraic surface with an ample divisor H, Fubini-Study

metric g, and Kahler form w. Then
AT (X) =Re (NP(X) @A X)) ®Rw, A (X) =w" = AV(X).

> In this case V4 = da + da according to QY(X, E) = QM(X, E) ® QY(X, E)
and ,
AisASD = (1) 0,=0, (2)03=0,F4Anw=0.

> (Donaldson) (1) defines a holomorphic structure on E, and (2) says that E

is j-stable with respect to H i.e.

for any sub-line-bundle F = £ H - ¢(F) < %2,
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> Let X be a projective algebraic surface with an ample divisor H, Fubini-Study
metric g, and Kahler form w. Then

AT (X) =Re (NP(X) @A X)) ®Rw, A (X) =w" = AV(X).

> In this case V4 = d4 + 04 according to QY(X, E) = QY(X, E) @ Q%(X, E)
and
AisASD < (1) 33 =0, (2)3% =0,Fanw=0.
> (Donaldson) (1) defines a holomorphic structure on E, and (2) says that E

is j-stable with respect to H i.e.

for any sub-line-bundle F = £ H - ¢(F) < %2,
> Let M},(cy) be the moduli space of rank 2 y-stable holomorphic bundles with
fixed determinant L such that ¢;(L) = ¢; and fixed second Chern class ¢;. The

(expected) real dimension of M%(cy) is
2(x"(Ox) — X"(E)) = 86, — 26 — 6(1 — KA(X) + K3(X)) = d,
by noting that b(X) = 2h%1(X) and b"(X) = 2h%2(X) + 1.
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> Let X be a projective algebraic surface with an ample divisor H, Fubini-Study
metric g, and Kahler form w. Then

AT (X) =Re (NP(X) @A X)) ®Rw, A (X) =w" = AV(X).

> In this case V4 = da + 04 according to QY(X, E) = Q1YO(X, E) @ Q%L(X, E)
and ,
AisASD = (1) 0,=0, (2)03=0,F4Anw=0.

> (Donaldson) (1) defines a holomorphic structure on E, and (2) says that E

is j-stable with respect to H i.e.

for any sub-line-bundle F c E H-¢(F) < %

> Let M},(cy) be the moduli space of rank 2 y-stable holomorphic bundles with
fixed determinant L such that ¢;(L) = ¢; and fixed second Chern class ¢;. The
(expected) real dimension of M%(cy) is

2(X"(Ox) = X"(E)) = 86, — 2c2 — 6(1 — K (X) + h°2< ) = d.

by noting that b;(X) = 2h%1(X) and b*(X) = 2h%2(X) +
> (Donaldson) There exists a homeomorphism ®: Ng(c, c2) — M (c).
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> To define Donaldson invariants as intersection numbers on N,(c1, ¢3) it needs

to be compactified.
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> To define Donaldson invariants as intersection numbers on N,(c1, ¢3) it needs
to be compactified.

(Uhlenbeck compactification) It is given by taking a closure of Ny(c1, ¢z) inside

]_[/v c1, & — n) x Sym"(X).

n=0
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> To define Donaldson invariants as intersection numbers on N,(c1, ¢3) it needs
to be compactified.

(Uhlenbeck compactification) It is given by taking a closure of Ny(c1, ¢z) inside

]_[/v c1, & — n) x Sym"(X).

n=0
» If X is a projective algebraic surface as before, there is a compactification of

M (cy) by taking the closure inside the moduli space of rank 2 Gieseker
semi-stable sheaves with determinant L and fixed .
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> To define Donaldson invariants as intersection numbers on Ny(c1, ¢3) it needs
to be compactified.

(Uhlenbeck compactification) It is given by taking a closure of Ny(c1, ¢z) inside

]_[/v c1, & — n) x Sym"(X).

n=0
» If X is a projective algebraic surface as before, there is a compactification of

M (cy) by taking the closure inside the moduli space of rank 2 Gieseker
semi-stable sheaves with determinant L and fixed .

> (Li, Morgan) There exists a morphism E:M—ﬁ,ﬁ) — Ny (c1, ) extending
Donaldson’s homeomorphism ®. Moreover, ®.[ML(cy)] = [N, (c1, )]
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» For simplicity, assume X is simply connected and also there are a universal
bundle £ over X x N,(c1, c2) and a universal connection D: Q°(€) — QY(E).

Define

1

pr LX) = H (W, @)  pla) = 4 (e() - &()) fa-
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Structure of Donaldson Invariants

» For simplicity, assume X is simply connected and also there are a universal
bundle £ over X x N,(c1, c2) and a universal connection D: Q°(€) — QY(E).

Define

p H(X) = H (Wplee)  pla) = 3 (@) — () /a

> Let aq, ..., a5 € Hy(X) and p € Hy(X) be the class of a point. Define the

Donaldson invariant by

{ai,..., ay p’”>21’g = plag) u o p(ay) up(p)™.

[Ng(C1>C2)]

This is nonzero only if 2/ + 4m = d (dimension of N,(cy, c)).
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» For simplicity, assume X is simply connected and also there are a universal
bundle £ over X x N,(c1, c2) and a universal connection D: Q°(€) — QY(E).

Define

1

pr LX) = H (W, @)  pla) = 4 (e() - &()) fa-

> Let g, ...,y € Hy(X) and p € Hy(X) be the class of a point. Define the

Donaldson invariant by

{ai,..., ay p’”>;1’g = plag) u o p(ay) up(p)™.

[Ng(C1>C2)]

This is nonzero only if 2/ + 4m = d (dimension of N,(cy, c)).

> If b7(X) > 1, Donaldson invariants are independent of the choice of the
generic metric, and so they are really the invariants of the differentiable

structure of X.
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» For simplicity, assume X is simply connected and also there are a universal
bundle £ over X x N,(c1, c2) and a universal connection D: Q°(€) — QY(E).
Define

1

pr LX) = H (W, @)  pla) = 4 (e() - &()) fa-

> Let ay,...,a5 € Hy(X) and p € Hy(X) be the class of a point. Define the
Donaldson invariant by

{ai,..., ay p’”>;1’g = plag) u o p(ay) up(p)™.

[Ng(C1>C2)]

This is nonzero only if 2/ + 4m = d (dimension of N,(cy, c)).
> If b7(X) > 1, Donaldson invariants are independent of the choice of the

generic metric, and so they are really the invariants of the differentiable
structure of X.

> If b7(X) = 1, the invariants depend only on a system of walls and chambers in
H?(X,R)" := {a € H*(X,R) | o? > 0}.
Gottsche-Yoshioka-Nakajima proved wall-crossing formulas involving
modular forms.
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Structure of Donaldson Invariants

» For simplicity, assume X is simply connected and also there are a universal
bundle £ over X x N,(c1, c2) and a universal connection D: Q°(€) — QY(E).
Define

1

pr LX) = H (W, @)  pla) = 4 (e() - &()) fa-

> Let ay,...,a5 € Hy(X) and p € Hy(X) be the class of a point. Define the
Donaldson invariant by

1,8

{oa, . anp™)y ) c = plag) u o p(ay) up(p)™.

[Ng(C1>C2)]

This is nonzero only if 2/ + 4m = d (dimension of N,(cy, c)).

> If b7(X) > 1, Donaldson invariants are independent of the choice of the
generic metric, and so they are really the invariants of the differentiable
structure of X.

> If b7(X) = 1, the invariants depend only on a system of walls and chambers in
H?(X,R)" := {a € H*(X,R) | o? > 0}.
Gottsche-Yoshioka-Nakajima proved wall-crossing formulas involving
modular forms.

» If X is a projective algebraic surface as before, one can define Donaldson
invariants algebraically by replacing £ with the universal sheaf over
X x ML(cy). Using the map ® above one can see that the two types of
invariants coincide.
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> For simplicity, we assume b*(X) > 1 and so we can drop the metric g from

the notation.

Amin Gholampour Introduction to Donaldson and Seiberg-Witten invariants



Motivation
Connections and curvature
ASD connections
Donaldson theory Moduli space of ASD connections

Relation to holomorphic vector bundles
Compactifictions

Donaldson Invariants

Structure of Donaldson Invariants

> For simplicity, we assume b*(X) > 1 and so we can drop the metric g from
the notation.

> Let S.(X) = Sym(Hy(X) @ Hyo(X)). It is graded by assigning degree 2 (resp.
degree 4) to the elements of Hy(X) (resp.Hy(X)). Then Donaldson invariants
define a map { — >21: S4(X) — Q. One can then define

Dx.c = Y, {—)7:5.(X) - Q.

d=0
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> For simplicity, we assume b*(X) > 1 and so we can drop the metric g from

the notation.

> Let S.(X) = Sym(Hy(X) @ Hyo(X)). It is graded by assigning degree 2 (resp.
degree 4) to the elements of Hy(X) (resp.Hy(X)). Then Donaldson invariants
define a map { — >21: S4(X) — Q. One can then define

Dx. = Z < o >;1: 5.(X) — Q.
d=>0

> X is called of simple type if Dx ., (c(p?* —4)) = 0 for any ¢; and o € S.(X). It
is known that K3 surfaces and complete intersections are of simple type.
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> For simplicity, we assume b™(X) > 1 and so we can drop the metric g from

the notation.

> Let S.(X) = Sym(Ha(X) @ Ho(X)). It is graded by assigning degree 2 (resp.
degree 4) to the elements of Hy(X) (resp.Hy(X)). Then Donaldson invariants
define a map { — >21: S4(X) — Q. One can then define

DX7C1 = Z < o >d1
d=>0
> X is called of simple type if Dx ., (c(p* —4)) = 0 for any ¢; and o € S.(X). It
is known that K3 surfaces and complete intersections are of simple type.
» For a€ Hy(X) and a € 5*(X) and a variable z write

Dx ¢, (ae™) ZDXC1 aa™)z"/nl.

n=0

> (Kronheimer-Mrowka) If X is of simple type there exit so called basic
classes K1, ..., K; € H*(X,Z) and rational numbers qi(c1),. .., q/(c1) € Q
such that for all a € Hy(X)

Dx ¢, (1 + p/2)e*) = 2/22q elKinaz,
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> For simplicity, we assume b™(X) > 1 and so we can drop the metric g from
the notation.

> Let S.(X) = Sym(Ha(X) @ Ho(X)). It is graded by assigning degree 2 (resp.
degree 4) to the elements of Hy(X) (resp.Hy(X)). Then Donaldson invariants
define a map { — >21: S4(X) — Q. One can then define

Dx. = Z < - >;1

d=>0
> X is called of simple type if Dx ., (c(p* —4)) = 0 for any ¢; and o € S.(X). It
is known that K3 surfaces and complete intersections are of simple type.
» For a€ Hy(X) and a € 5*(X) and a variable z write
Dx ¢, (ae™) Z Dx ¢, (ca™)z"/nl.
n=0

> (Kronheimer-Mrowka) If X is of simple type there exit so called basic
classes K1, ..., K; € H*(X,Z) and rational numbers qi(c1),. .., q/(c1) € Q
such that for all a € Hy(X)

Dx ¢, (1 + p/2)e*) = 2/22q elKinaz,

> (Example X = K3) The only basic class is K; = 0 and for all a € Hy(X,Z)

2
-1 c1/2
Dk3.c,((1 + p/2)e*) = %eazzz/g
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» Witten in 1994 showed that the problem of classification of 4-manifolds up to
diffeomorphism can be done by means of a set of simpler equations:
Seiberg-Witten equations.
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» Witten in 1994 showed that the problem of classification of 4-manifolds up to
diffeomorphism can be done by means of a set of simpler equations:
Seiberg-Witten equations.

» He also showed by physical arguments that the Seiberg-Witten invariants
contain all the information of Donaldson invariants and provide the missing
ingredients i.e. the basic classes K; and the coefficients g;(c;) in KM structure

theorem.

Amin Gholampour Introduction to Donaldson and Seiberg-Witten invariants



Motivation

Spin structures

Spin€ structures

Spin® connection

Dirac operator
Seiberg-Witten equations

Seiberg-Witten theory SW moduli space
SW invariants (b, > 1)
SW invariants (b, = 1)
Kahler surfaces ~
Poincaré invariants
Relation to Donaldson theory

» Witten in 1994 showed that the problem of classification of 4-manifolds up to
diffeomorphism can be done by means of a set of simpler equations:
Seiberg-Witten equations.

> He also showed by physical arguments that the Seiberg-Witten invariants
contain all the information of Donaldson invariants and provide the missing
ingredients i.e. the basic classes K; and the coefficients g;(c;) in KM structure
theorem.

> (Marifio notes) The correlation functions of N' = 2 Yang-Mills theory coupled
to hypermultiplets coincides with SW invariants.
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» Witten in 1994 showed that the problem of classification of 4-manifolds up to
diffeomorphism can be done by means of a set of simpler equations:
Seiberg-Witten equations.

> He also showed by physical arguments that the Seiberg-Witten invariants
contain all the information of Donaldson invariants and provide the missing
ingredients i.e. the basic classes K; and the coefficients g;(c;) in KM structure
theorem.

> (Marifio notes) The correlation functions of N' = 2 Yang-Mills theory coupled
to hypermultiplets coincides with SW invariants.

> We saw that Donaldson invariants of X are independent of metric when
b*(X) > 1 and depend mildly on metric when b*(X) = 1. The same is true
for SW invariants as we will see. This is a feature of the Witten type TFT's
(compared to Scwharz type) that there is an explicit metric dependence in
defining the theory but the correlation functions happen not to depend (or
depend mildly) on the metric.
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» As before, let X be an oriented smooth closed real 4-manifold with a
Riemannian metric g.
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> As before, let X be an oriented smooth closed real 4-manifold with a
Riemannian metric g.

» Given a principal SO(n)-bundle P — X,
7 lift of the structure to the double cover Spin(n) — SO(n) < wy(P) = 0.
If wo(Tx) = 0 we say that X is a spinable manifold.
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» As before, let X be an oriented smooth closed real 4-manifold with a
Riemannian metric g.

> Given a principal SO(n)-bundle P — X,
7 lift of the structure to the double cover Spin(n) — SO(n) < wy(P) = 0.
If wo(Tx) = 0 we say that X is a spinable manifold.

> If {e1, e, €3, &4} is the standard basis of R* then CI(R*) is an R-algebra

generated by e's subject to the relations e = —1 and eje; = —eje; for i # .
Its vector space dimension is 16 (R-basis: {ej, - - - €, }i;<..<j,). The parity of t
defines a Zy-grading CI(R*) = Clo(R*) ® Cl;(R*). There is an identification of
algebras Clo(R*) =~ HI @ H. The group Spin(4) is identified with the subgroup
of Cl§ (R*) generated by v € R* with |v| = 1.
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» As before, let X be an oriented smooth closed real 4-manifold with a
Riemannian metric g.

> Given a principal SO(n)-bundle P — X,
7 lift of the structure to the double cover Spin(n) — SO(n) < wy(P) = 0.
If wo(Tx) = 0 we say that X is a spinable manifold.

> If {e1, e, €3, &4} is the standard basis of R* then CI(R*) is an R-algebra
generated by e's subject to the relations e = —1 and eje; = —eje; for i # .
Its vector space dimension is 16 (R-basis: {ej, - - - €, }i;<..<j,). The parity of t
defines a Zy-grading CI(R*) = Clo(R*) ® Cl;(R*). There is an identification of
algebras Clo(R*) =~ HI @ H. The group Spin(4) is identified with the subgroup
of Cl§ (R*) generated by v € R* with |v| = 1.

> There is a natural linear isomorphism

NR* — CI(R*) e,

/\.../\eitp_)el-l...el-t.

Let w := —ejeresey; it satisfies w? = 1. Let (CI(R*) ® C)* be the

+1-eigenspaces of the left multiplication by w on CI(R*) ® C. Under the
isomorphism above (Clo(R*) ® C)" corresponds to

1+
C(TW) @ (NRYQC.
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» If X is a spinable manifold let P— X be a corresponding double cover of the
frame bundle of Tx. There exists an associated complex spinor bundle

S := P xspinay Ac(RY),

where Ac(R*) is the unique (up to isomorphism) complex representation of
the Clifford algebra CI(R*) (using the identification CI(R*) ® C =~ M,(C)).
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» If X is a spinable manifold let P— X be a corresponding double cover of the
frame bundle of Tx. There exists an associated complex spinor bundle

S := P xspinay Ac(RY),

where Ac(R*) is the unique (up to isomorphism) complex representation of

the Clifford algebra CI(R*) (using the identification CI(R*) ® C =~ M,(C)).
> w-action decomposes Ac(R*) into AZ(R*) and we have
(Clp(R*) ® C)* =~ End(AZ(RY)).

In the + case the identity endomorphism corresponds to ”TW
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» If X is a spinable manifold let P— X be a corresponding double cover of the
frame bundle of Tx. There exists an associated complex spinor bundle

S 1= P Xgpin(a) Ac(RY),
where Ac(R*) is the unique (up to isomorphism) complex representation of

the Clifford algebra CI(R*) (using the identification CI(R*) ® C =~ M,(C)).
> w-action decomposes Ac(R?) into AZ(R?) and we have

(Clp(R*) ® C)* =~ End(AZ(RY)).

In the + case the identity endomorphism corresponds to ”TW

> The decomposition of A¢(R*) = AL (R*) ® Az (R?) induces the

decomposition of the spinor bundle
S=S5"®S

into the so called +-chirality spinors. The SU(2)-bundles S* can be
alternatively obtained via the identification Spin(4) =~ SU(2) x SU(2) (induced
by Clo(R*) = H @ H).
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> It turns out there are no obstructions for constructing a spin® structure on X,
i.e. a lift of the structure of Tx to the double cover Spin“(4) — SO(4) x U(1).
Spin©(4) is the subgroup of (Cly(R*) ® C)* generated by Spin(4) and the unit
circle in C.
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> It turns out there are no obstructions for constructing a spin® structure on X,
i.e. a lift of the structure of Tx to the double cover Spin“(4) — SO(4) x U(1).

Spin©(4) is the subgroup of (Cly(R*) ® C)* generated by Spin(4) and the unit
circle in C.

> The projection Spin©(4) — U(1) determines a complex line bundle £, such
that ¢1(L£) =, wo(X). It is called the determinant of the spin®-structure. One
can similarly define the spinor bundle

St = P Xspinc(a) Ac(RY),

and its decomposition S, = SZ @S, . We have the identifications £ = det SZ—F.
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> It turns out there are no obstructions for constructing a spin® structure on X,
i.e. a lift of the structure of Tx to the double cover Spin“(4) — SO(4) x U(1).
Spin©(4) is the subgroup of (Cly(R*) ® C)* generated by Spin(4) and the unit
circle in C.

> The projection Spin©(4) — U(1) determines a complex line bundle £, such
that ¢1(L£) =, wo(X). It is called the determinant of the spin®-structure. One
can similarly define the spinor bundle

St = P Xspinc(a) Ac(RY),

and its decomposition S, = SZ @S, . We have the identifications £ = det SZ—F.

> There is a bijection between the spin® structures on X and the elements of
H?(X,Z). Varying a given spin® structure by a class o € H*(X,Z) amounts to
replacing Sz by Scei,. = Se ® L, where L, is the complex line bundle with
ca(Lly) = a.
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> It turns out there are no obstructions for constructing a spin® structure on X,
i.e. a lift of the structure of Tx to the double cover Spin“(4) — SO(4) x U(1).
Spin©(4) is the subgroup of (Cly(R*) ® C)* generated by Spin(4) and the unit
circle in C.

> The projection Spin©(4) — U(1) determines a complex line bundle £, such
that ¢1(L£) =, wo(X). It is called the determinant of the spin®-structure. One
can similarly define the spinor bundle

St = P Xspinc(a) Ac(RY),

and its decomposition S, = SZ @S, . We have the identifications £ = det SZ—F.

> There is a bijection between the spin® structures on X and the elements of
H?(X,Z). Varying a given spin® structure by a class o € H*(X,Z) amounts to
replacing Sz by Scei,. = Se ® L, where L, is the complex line bundle with
ca(Lly) = a.

» When X has an almost complex structure compatible with the Riemannian
metric then there is a canonical choice of spin® structure given by £ = K} !,

the inverse of the canonical bundle of (0,2)-forms. In this case,

4 1 02 _ . 701

Amin Gholampour Introduction to Donaldson and Seiberg-Witten invariants



Spin© connection
Dirac operator
Seiberg-Witten equations

Seiberg-Witten theory SW moduli space
SW invariants (b, > 1)
SW invariants (b, = 1)
Kahler surfaces ~
Poincaré invariants
Relation to Donaldson theory

» Fix a Levi-Civita connection w on the frame bundle P of Tx. Let P — X be
the principal bundle corresponding to a spin® structure on X with determinant

L.
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» Fix a Levi-Civita connection w on the frame bundle P of Tx. Let P — X be
the principal bundle corresponding to a spin® structure on X with determinant

L.

» Since Spin©(4) — SO(4) is not a finite cover the Levi-Civitd connection above
does not automatically lift to a connection on P. Another piece of information
needed is a U(1)-connection A on L.
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» Fix a Levi-Civita connection w on the frame bundle P of Tx. Let P — X be
the principal bundle corresponding to a spin® structure on X with determinant

L.

» Since Spin©(4) — SO(4) is not a finite cover the Levi-Civitd connection above
does not automatically lift to a connection on P. Another piece of information
needed is a U(1)-connection A on L.

> w and A determine a connection on the principal SO(4) x U(1)-bundle
P/{+£1}, and there is unique lift of this connection to its double cover P.
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» Fix a Levi-Civita connection w on the frame bundle P of Tx. Let P — X be
the principal bundle corresponding to a spin® structure on X with determinant

L.

> Since Spin“(4) — SO(4) is not a finite cover the Levi-Civitd connection above
does not automatically lift to a connection on P. Another piece of information
needed is a U(1)-connection A on L.

> w and A determine a connection on the principal SO(4) x U(1)-bundle
P/{+£1}, and there is unique lift of this connection to its double cover P.

> Let V: Q%(X, S;) — QY(X, S;) be the induced covariant derivative on the
spinor bundle.
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> Let CI(X) := P xso(a) CI(R*) be the associated bundle of Clifford algebras.
Since X is Riemannian there is a canonical identification Tx = Ty. Thus,
CI(X) can be viewed as a new algebra structure on A* Ty in addition to its own
exterior algebra structure.
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> Let CI(X) := P xso(a) CI(R*) be the associated bundle of Clifford algebras.
Since X is Riemannian there is a canonical identification Tx = Ty. Thus,
CI(X) can be viewed as a new algebra structure on A* Ty in addition to its own
exterior algebra structure.

> There is also a natural action of the Clifford bundle CI(X) on the spinor bundle
Sc.
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> Let CI(X) := P xso(s) CI(R*) be the associated bundle of Clifford algebras.
Since X is Riemannian there is a canonical identification Tx = Ty. Thus,
CI(X) can be viewed as a new algebra structure on A* Ty in addition to its own
exterior algebra structure.

> There is also a natural action of the Clifford bundle CI(X) on the spinor bundle
Sc.

» Define the Dirac operator

S

O X, S) = QUX,S)  dalo)(x) = Y e - Ve (0)(x),
i=1
where {ey, ..., e,} is an oriented orthonormal frame for Tx , and - is the
Clifford multiplication. This definition is independent of the choice of

{er,...,en}.
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> Let CI(X) := P xso(s) CI(R*) be the associated bundle of Clifford algebras.
Since X is Riemannian there is a canonical identification Tx = Ty. Thus,

CI(X) can be viewed as a new algebra structure on A* Ty in addition to its own
exterior algebra structure.

> There is also a natural action of the Clifford bundle CI(X) on the spinor bundle
Sc.

» Define the Dirac operator

S

O X, S) = QUX,S)  dalo)(x) = Y e - Ve (0)(x),
i=1
where {ey, ..., e,} is an oriented orthonormal frame for Tx , and - is the

Clifford multiplication. This definition is independent of the choice of
{er,...,en}.

» If X is a Kahler manifold, there is a unique hermitian connection A on K)?l
and Dirac operator simplifies to

Oa: @, Q%% (X,C) - Q*(X,C)
0a(0)(x) = V2(2(o)(x) + 7 (0)(x))-

Amin Gholampour
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» Fix a spin®-structure P for the frame bundle P of the tangent bundle Tyx.
Suppose its determinant is L.

Amin Gholampour Introduction to Donaldson and Seiberg-Witten invariants



Spir
Dirz
Seiberg-Witten equations

Seiberg-Witten theory SW moduli space

» Fix a spin®-structure P for the frame bundle P of the tangent bundle Tyx.
Suppose its determinant is L.
> The SW equations are for a spinor field 1 € Q°(X,S}) and a U(1)-connection
Aon L:
Fi = ®w i,
Oa(y)) =
Here, 1 ® 1" is a section of

1
SF@(Sf) ~EndS; = (Cly(P)®C)* = C(—— +w

2
where 1+2W acts as the identity. The right hand side of the first equation is

traceless and hence is identified with a section of A>™(Tx) ® C. Finally,
identifying Tx = Ty by using the metric, one can think of the right hand side

) A (Tx) ®C,

as a self-dual 2-form.
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» As in Donaldson theory we have an action of the gauge group Aut(ﬁ) on the
space of pairs (A, 1)) appear in SW equations.
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» As in Donaldson theory we have an action of the gauge group Aut(ﬁ) on the
space of pairs (A, 1)) appear in SW equations.

~

> Take the quotient space B(P) of the space of irreducible pairs i.e. those
(A, 1) with ¥ # 0.
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» As in Donaldson theory we have an action of the gauge group Aut(ﬁ) on the
space of pairs (A, 1)) appear in SW equations.

~

> Take the quotient space B(P) of the space of irreducible pairs i.e. those
(A, 1) with ¥ # 0.

» (Theorem) B(P) is a Hilbert manifold, and it is homotopy equivalent to
CP* x K(HY(X,Z),1). There is a universal S'-bundle over B(P)
corresponding to the CP*-factor. Let € H2(B(P), Z) be its first Chern class.
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» As in Donaldson theory we have an action of the gauge group Aut(ﬁ) on the
space of pairs (A, 1)) appear in SW equations.

~

> Take the quotient space B(P) of the space of irreducible pairs i.e. those
(A, 1) with ¥ # 0.

» (Theorem) B(P) is a Hilbert manifold, and it is homotopy equivalent to
CP* x K(HY(X,Z),1). There is a universal S'-bundle over B(P)
corresponding to the CP*-factor. Let € H2(B(P), Z) be its first Chern class.

> In Donaldson theory one uses the metric as a parameter and shows that for a
generic metric the ASD moduli space is smooth. In SW theory one instead
perturbs the curvature equation by adding a self-dual 2-form h to the right
hand side of the first equation. Let M (P, h) be the quotient space of the
solution pairs (A, 1)) to the perturbed equations by the action of the gauge

group.
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» As in Donaldson theory we have an action of the gauge group Aut(ﬁ) on the
space of pairs (A, 1)) appear in SW equations.

» Take the quotient space B(ﬁ) of the space of irreducible pairs i.e. those
(A, 1) with ¥ # 0.

» (Theorem) B(P) is a Hilbert manifold, and it is homotopy equivalent to
CP* x K(HY(X,Z),1). There is a universal S'-bundle over B(P)
corresponding to the CP*-factor. Let € H2(B(P), Z) be its first Chern class.

> In Donaldson theory one uses the metric as a parameter and shows that for a
generic metric the ASD moduli space is smooth. In SW theory one instead
perturbs the curvature equation by adding a self-dual 2-form h to the right
hand side of the first equation. Let M (P, h) be the quotient space of the
solution pairs (A, 1)) to the perturbed equations by the action of the gauge
group.

> (Main theorem) Suppose b (X) > 0. For a generic h, the perturbed moduli
space M(P, h) forms a smooth compact submanifold of B(ﬁ) of dimension

c(L£)? —2x(X) — 30(X)
1 :
where x(X) is the Euler characteristic, and o(X) = b™(X) — b~ (X) is the
signature of X.

Amin Gholampour Introduction to Donaldson and Seiberg-Witten invariants



Motivation

Spin structures

Spin© structures

Spin® connection

Dirac operator
Seiberg-Witten equations

Seiberg-Witten theory SW moduli space
SW invariants (b > 1)
SW invariants (
Kabhler surfaces
Poincaré invariants
Relation to Donaldson theory

> Suppose b™(X) > 1. Choose orientations for H}(X,R) and H?(X,R).




Spin© connection
Dirac operator
Seiberg-Witten equations

Seiberg-Witten theory SW moduli space
SW invariants (b > 1)
SW invariants (b, = 1)
Kahler surfaces ~
Poincaré invariants
Relation to Donaldson theory

> Suppose b™(X) > 1. Choose orientations for H}(X,R) and H?(X,R).

> For a generic h these orientations provides M (P, h) with an orientation. If

d = dim M(P, h), define

d/2
SW(P) .= { i €2,
0 d¢27.

This is independent of the choices of h and the Riemannian metric g.
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> Suppose b™(X) > 1. Choose orientations for H}(X,R) and H?(X,R).

> For a generic h these orientations provides M (P, h) with an orientation. If

d = dim M(P, h), define

d/2
SW(P) .= { i €2,
0 d¢27.

This is independent of the choices of h and the Riemannian metric g.

> Let Spin“(X) be the set of isomorphism classes of spin© structures P X.
We get SW invariants
SW: Spin“(X) — Z.

It is nonzero only for a finitely many elements of Spin“(X) (basic classes).

Amin Gholampour Introduction to Donaldson and Seiberg-Witten invariants



Seiberg-Witten theory

> Suppose b™(X) > 1. Choose orientations for H'(X,R) and H2(X,R).

> For a generic h these orientations provides M (P, h) with an orientation. If

d = dim M(P, h), define

d/2
SW(P) .= { i €2,
0 d¢27.

This is independent of the choices of h and the Riemannian metric g.

> Let Spin“(X) be the set of isomorphism classes of spin© structures P X.
We get SW invariants

SW: Spin“(X) — Z.
It is nonzero only for a finitely many elements of Spin“(X) (basic classes).
> (Involution) P is a double cover of Pso(n) X)ipsl. Let P¢,; be the dual
(conjugate) bundle of Pci. The pullback of P via

(Id,2): Pso(m xx Per = Pso(n) X x Pst

induces a spin®-structure denoted by —P. There is a natural homeomorphism
M(P, h) - M(—P,—h) and moreover,

~ 1+bT (X)—by(X)

SW(—P) = (=1~ 2 SW(P).
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~

> Suppose b (X) = 1. SW,(P) is defined as in the previous case. The only
difference is that, as in Donaldson theory, there is a dependence on the choice
of the metric.
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~

> Suppose b (X) = 1. SW,(P) is defined as in the previous case. The only

difference is that, as in Donaldson theory, there is a dependence on the choice
of the metric.

> Suppose that HY(X,Z) = 0 and c¢;(£) # 0. For any metric g there is a
unique g-self dual harmonic 2-form w™(g) lying in the positive component of

H?(X,R)". Let R+ be the space of Riemannian metrics g on X such that
wh(g) - all)>0or <0.
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~

> Suppose b (X) = 1. SW,(P) is defined as in the previous case. The only
difference is that, as in Donaldson theory, there is a dependence on the choice

of the metric.

> Suppose that HY(X,Z) = 0 and c¢;(£) # 0. For any metric g there is a
unique g-self dual harmonic 2-form w™(g) lying in the positive component of
H?(X,R)". Let R+ be the space of Riemannian metrics g on X such that
wh(g) - all)>0or <0.

~

» SW,(P) is constant on R4, so we can simply write SW, (P). Moreover, if

d e 27 N N
SW_(P) — SW_(P) = (-1)*92,
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» Suppose (X, w) is a Kahler surface with Kahler metric.
Let P; be the spin® structure with the determinant K)?l. As we have seen,

+ o 1 0,2i - o 701

and v/2(0 +0): QUX,C) @ Q%*(X,C) — Q%(X, C).
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> Suppose (X, w) is a Kahler surface with Kahler metric.
Let PJ be the spin© structure with the determinant K 1. As we have seen,

+ o~ 0,2/ 0,1
SK)?]' = ®IIOTX 3 SK 1 = T

and v/2(0 +0): QUX,C) @ Q%*(X,C) — Q%(X, C).
> Any other spin® structure P differs from this by tensoring with a U(1)-bundle
Lo, with the new determinant bundle £ = K;* ® £3 and the spinors bundles

5+%5;X1®£07 =5 1®£0

A unitary connection Ay on Lj and the natural holomorphic hermitian
connection on K;l determines a connection A on £ and then coupling

V2(0 + 0) with V4, gives
V2(Bag + 0ag ) : QX Lo) D Q°A(X, Lo) — (X, Lo).
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> Suppose (X, w) is a Kahler surface with Kahler metric.
Let PJ be the spin© structure with the determinant K 1. As we have seen,

+ o~ 0,2/ 0,1
5 1 = IIOTX ; SK 1 = T

and v/2(0 +0): QUX,C) @ Q%*(X,C) — Q%(X, C).
> Any other spin® structure P differs from this by tensoring with a U(1)-bundle
Lo, with the new determinant bundle £ = K;* ® £3 and the spinors bundles

5+ = S;Xl (>§;CO7 L_ = Sl;X]_ ®£0

A unitary connection Ay on Ly and the natural holomorphic hermitian
connection on K;l determines a connection A on £ and then coupling

V2(0 + 0) with V4, gives
V2(Bag + 0ag ) : QX Lo) D Q°A(X, Lo) — (X, Lo).
> Let ¥ = (o, 8) € QU(X, Lo) ® Q%(X, Ly) SW equation can be written as

(FOM = i(laf2 - |8P)w,

A
>0
N

|
9
@
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ts
Relation to Donaldson theory

> Suppose (X, w) is a Kahler surface with Kahler metric.
Let PJ be the spin© structure with the determinant K 1. As we have seen,

+ o~ ol 702 0,1
5 1 — IIOTX , SK 1 = T

and v/2(0 +0): QUX,C) @ Q%*(X,C) — Q%(X, C).
> Any other spin® structure P differs from this by tensoring with a U(1)-bundle
Lo, with the new determinant bundle £ = K;* ® £3 and the spinors bundles

5+%5;X1®£07 =5 1®£0

A unitary connection Ay on Lj and the natural holomorphic hermitian
connection on K;l determines a connection A on £ and then coupling

V2(0 + 0) with V4, gives
V2(Bag + 0ag ) : QX Lo) D Q°A(X, Lo) — (X, Lo).
> Let ¥ = (o, 8) € QU(X, Lo) ® Q%(X, Ly) SW equation can be written as

(FOY = 4(lal = |8P)w,
,_-2,2 _ ap

A

> For any solution (A, %), A induces a holomorphic structure on £ and hence on
Lo, with respect to which « is a holomorphic section of £y and 3 is a
holomorphic section of Kx ® Ly*. If deg £ = (L) Aw <0 (resp. = 0)
B =0 (resp. @ =0). In particular, if deg £ = 0 then any solution consists of
an ASD connection A on L.
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> If deg Kx < 0 then only solutions to SW equations are reducible. If
deg Kx > 0 then SW(PK)?l) =1
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> If deg Kx < 0 then only solutions to SW equations are reducible. If
deg Kx > 0 then SW(PK)?l) =1

> (Taubes) If b*(X) > 1 then X is of simple type i.e. SW invariants vanish
except for finitely many classes ¢;(L) (called the basic classes) for which the
dimensions of the (perturbed) moduli spaces are 0. For example for K3 and
abelian surfaces the only basic class is 0 (as in Donaldson theory) and

~

SW(P,1) = 1.

X
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> If deg Kx < 0 then only solutions to SW equations are reducible. If
deg Kx > 0 then SW(PK)?l) =1

> (Taubes) If b™(X) > 1 then X is of simple type i.e. SW invariants vanish
except for finitely many classes ¢;(L) (called the basic classes) for which the
dimensions of the (perturbed) moduli spaces are 0. For example for K3 and
abelian surfaces the only basic class is 0 (as in Donaldson theory) and

~

SW(Py_1) = 1.

» If X is minimal algebraic surface of general type, then for any Kahler metric

r1 /5 = ISK—l,
~ 0,1 0,2 ~ ’25
SW(P) = § (=) 000 p = —py s,
0 otherwise.

\
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> If deg Kx < 0 then only solutions to SW equations are reducible. If
deg Kx > 0 then SW(PK)?l) =1

> (Taubes) If b™(X) > 1 then X is of simple type i.e. SW invariants vanish
except for finitely many classes ¢;(L) (called the basic classes) for which the
dimensions of the (perturbed) moduli spaces are 0. For example for K3 and
abelian surfaces the only basic class is 0 (as in Donaldson theory) and

~

SW(Py_1) = 1.

» If X is minimal algebraic surface of general type, then for any Kahler metric

~

-

1 P — PK)?l,
SW(P) = 4 (~1) #0020 p— P
0 otherwise.

\

» If X is minimal Kahler surface which is elliptic and Kx is not a torsion class.
Then . .
SW(P 1) =1, SW(-Py1) = (—1)F M OFAEX),

X

Furthermore, if SW(P) # 0 then the image of ¢;(£) in H3(X, Q) is a rational
multiple between —1 and 1 of the image of K.
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> Suppose that X is a projective surface and 3 € H*(X,Z). Define Hz(X) to be
the moduli space of pairs (L, s) of a nonzero holomorphic line bundle and a
holomorphic section such that ¢;(L) = 3. Equivalently, Hz(X) is
Grothendieck’s Hilbert scheme of divisors D < X in class 3, and so is a
projective scheme.
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> Suppose that X is a projective surface and 3 € H*(X,Z). Define Hz(X) to be
the moduli space of pairs (L, s) of a nonzero holomorphic line bundle and a
holomorphic section such that ¢;(L) = 3. Equivalently, Hz(X) is
Grothendieck’s Hilbert scheme of divisors D < X in class 3, and so is a
projective scheme.

> (Diirr-Kabanov-Okonek) There is a virtual fundamental class

[Hs(X)]"" € Aw(H3(X)), vd := B(B — Kx)/2.
Note that for the spin® structure P with c1(L) =28 — Kx we have

dim M(P, h) = Cl(ﬁ)z_zxix)_%(x) = 2vd using the identity
KZ = 2x(X) + 30(X).
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> Suppose that X is a projective surface and 3 € H*(X,Z). Define Hz(X) to be
the moduli space of pairs (L, s) of a nonzero holomorphic line bundle and a
holomorphic section such that ¢;(L) = 3. Equivalently, Hz(X) is
Grothendieck’s Hilbert scheme of divisors D < X in class 3, and so is a

projective scheme.
> (Diirr-Kabanov-Okonek) There is a virtual fundamental class

[Hs(X)]"" € Aw(H3(X)), vd := B(B — Kx)/2.
Note that for the spin® structure P with c1(L) =28 — Kx we have
dim M(P, h) = Cl(ﬁ)z_zxix)_%(x) = 2vd using the identity
Kz = 2x(X) + 30 (X).
> For B € H*(X,Z) let ¥ := Kx — (3 (this plays the role of involution in SW
theory). Let

p: Hz(X) — Pics(X), p: Hav(X) — Picg(X)
be defined by p(L,s) = L and p¥(L,s) = LY ® Kx.
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> Suppose that X is a projective surface and 3 € H*(X,Z). Define Hz(X) to be
the moduli space of pairs (L, s) of a nonzero holomorphic line bundle and a
holomorphic section such that ¢;(L) = 3. Equivalently, Hz(X) is
Grothendieck’s Hilbert scheme of divisors D < X in class 3, and so is a

projective scheme.
> (Diirr-Kabanov-Okonek) There is a virtual fundamental class

[Hs(X)]"" € Aw(H3(X)), vd := B(B — Kx)/2.
Note that for the spin® structure P with c1(L) =28 — Kx we have
dim M(P, h) = Cl(ﬁ)z_zxix)_%(x) = 2vd using the identity
Kz = 2x(X) + 30 (X).
> For B € H*(X,Z) let ¥ := Kx — (3 (this plays the role of involution in SW
theory). Let

p: Hz(X) — Pics(X), p: Hav(X) — Picg(X)

be defined by p(L,s) = L and p¥(L,s) = LY ® Kx.
> Let D < X x Hg(X) and DY < X x Hpv(X) be the universal divisors. Define

)
ii= a(OM)/IX] € HA(Hy(X),  p* = a(OD))/[X] € HX(Hy (X)).




> Suppose that X is a projective surface and 3 € H*(X,Z). Define Hz(X) to be
the moduli space of pairs (L, s) of a nonzero holomorphic line bundle and a
holomorphic section such that ¢;(L) = 3. Equivalently, Hz(X) is
Grothendieck’s Hilbert scheme of divisors D < X in class 3, and so is a

projective scheme.
> (Diirr-Kabanov-Okonek) There is a virtual fundamental class

[Hs(X)]"" € Aw(H3(X)), vd := B(B — Kx)/2.
Note that for the spin® structure P with c1(L) =28 — Kx we have
dim M(P, h) = Cl(ﬁ)z_zxix)_%(x) = 2vd using the identity
Kz = 2x(X) + 30 (X).
> For B € H*(X,Z) let ¥ := Kx — (3 (this plays the role of involution in SW
theory). Let

p: Hz(X) — Pics(X), p: Hav(X) — Picg(X)

be defined by p(L,s) = L and p¥(L,s) = LY ® Kx.
> Let D < X x Hg(X) and DY < X x Hpv(X) be the universal divisors. Define

)
pi= a(OD)/IX] € K(Hs(X),  p* = a(OD))/[X] € H2(Hy-(X).
> Poincaré invariants: (/,1V): H*(X,Z) — N"HY(X,Z) x N"HY(X,Z) defined

b (X 0 OO,

1Y(8) = (~1)* ”°1+h°2+vdp:<2_<—uv>" A [H (X)]).

These are both zero if 5 is not a type (1,1) class.




> Suppose that X is a projective surface and 3 € H*(X,Z). Define Hz(X) to be
the moduli space of pairs (L, s) of a nonzero holomorphic line bundle and a
holomorphic section such that ¢;(L) = 3. Equivalently, Hz(X) is
Grothendieck’s Hilbert scheme of divisors D < X in class 3, and so is a

projective scheme.
> (Diirr-Kabanov-Okonek) There is a virtual fundamental class

[Hs(X)]"" € Au(H5(X)), vd = B(B — Kx)/2.

Note that for the spin® structure P with c1(L) =26 — Kx we have
dim M(P, h) = Cl(ﬁ)z_zxix)_%(x) = 2vd using the identity
Kz = 2x(X) + 30 (X).
> For B € H*(X,Z) let ¥ := Kx — (3 (this plays the role of involution in SW
theory). Let

p: Hz(X) — Pics(X), p: Hav(X) — Picg(X)

be defined by p(L,s) = L and p¥(L,s) = LY ® Kx.
> Let D < X x Hg(X) and DY < X x Hpv(X) be the universal divisors. Define

)
pi= a(OD)/IX] € K(Hs(X),  p* = a(OD))/[X] € H2(Hy-(X).
> Poincaré invariants: (/,1V): H*(X,Z) — N"HY(X,Z) x N"HY(X,Z) defined

by
(250 [FXT™),
1Y(8) = (~1)* ”°1+h°2+vdp:<2<—uv>" A [H (X)]).

These are both zero if 5 is not a type (1,1) class.
> Theorem: If b*(X) > 1 then /(8) = IV (B) = SW(P).
If b7(X) = 1then [(5) = SW,(P) and IV(5) = SW_(P).

Here, SW invariants are defined with respect to the canonical orientation data

and P is the spin® structure with determinant 23 — K i.e. defers from the

canonical spin€ structure 5,()?1 by a U(1)-bundle in class S.
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> Let X be a smooth closed oriented 4-manifold with b;(X) = 0 and b™(X) > 3
and odd. Let 8 € H*(X,Z) and a € Hy(X,Q) and p € Hy(X) be the class of

a point.
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> Let X be a smooth closed oriented 4-manifold with b;(X) = 0 and b (X) > 3
and odd. Let 8 € H*(X,Z) and a € Hy(X,Q) and p € Hy(X) be the class of
a point.

> (Witten) Dx s((1 + p/2)e**) =
27x(X)+141cr(X)+8 (_1)Mea222/2 2 SW(B)(—1)B(6+C1(5>)/2e<q<5)’a>z,

]

where the sum is over all the spin® structures and c¢;(s) is the first Chern of
the determinant line bundle of s.
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Idson theory

> Let X be a smooth closed oriented 4-manifold with b;(X) = 0 and b™(X) > 3
and odd. Let 8 € H*(X,Z) and a € Hy(X,Q) and p € Hy(X) be the class of

a point.
> (Witten) Dx s((1 + p/2)e**) =
YX(X)+1410(X)+8 (_1)Mea2z2/2 Z SW(B)(_1)5(5+c1(5))/2e<c1(5),a>z,
S

where the sum is over all the spin® structures and c¢;(s) is the first Chern of
the determinant line bundle of s.

» Comparing with KM structure theorem, we find that the basic classes in
Donaldson theory must be c;(s) which are the basic classes in SW theory, and
also the rational coefficients in KM formula are determined by Witten's
formula above.
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> Let X be a smooth closed oriented 4-manifold with b;(X) = 0 and b™(X) > 3
and odd. Let 8 € H*(X,Z) and a € Hy(X,Q) and p € Hy(X) be the class of
a point.

> (Witten) Dx s((1 + p/2)e**) =

Tx(X)+11lo(X)+8 x(X)+o
4

(—1) " 22 3 SW(s)(—1) Fralh2gal @z,
S

where the sum is over all the spin® structures and c¢;(s) is the first Chern of
the determinant line bundle of s.

» Comparing with KM structure theorem, we find that the basic classes in
Donaldson theory must be c;(s) which are the basic classes in SW theory, and
also the rational coefficients in KM formula are determined by Witten's
formula above.

» Witten's argument is based on “ SW's ansatz of N/ = 2 SUSY gauge theory”
that is controlled by a family of elliptic curve (called SW curves). This
approach has not been made into a mathematical proof yet. SW curves also
appear in Fintushel-Stern blow up formulas in Donaldson theory.
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Relation to Donaldson theory

> Let X be a smooth closed oriented 4-manifold with b;(X) = 0 and b™(X) > 3
and odd. Let 8 € H*(X,Z) and a € Hy(X,Q) and p € Hy(X) be the class of
a point.

> (Witten) Dx s((1 + p/2)e**) =

Tx(X)+11lo(X)+8 x(X)+o
4

(—1) " 22 3 SW(s)(—1) Fralh2gal @z,
S

where the sum is over all the spin® structures and c¢;(s) is the first Chern of
the determinant line bundle of s.

» Comparing with KM structure theorem, we find that the basic classes in
Donaldson theory must be c;(s) which are the basic classes in SW theory, and
also the rational coefficients in KM formula are determined by Witten's
formula above.

» Witten's argument is based on “ SW's ansatz of N/ = 2 SUSY gauge theory”
that is controlled by a family of elliptic curve (called SW curves). This
approach has not been made into a mathematical proof yet. SW curves also
appear in Fintushel-Stern blow up formulas in Donaldson theory.

> Another approach uses the moduli space of SO(3)-monopoles (higher rank
analog of U(1)-monopoles in SW theory) by Pidstrigach-Tyurin and
Feehan-Leness, which in series of papers proves Witten's formula under certain
conditions on X, e.g. when 7x(X) + 11o(X) > 12. The idea is to construct a
cobordism between links of the compact moduli spaces of U(1) monopoles of
Seiberg-Witten type and the Donaldson moduli space of ASD connections,
which appear as singularities in the larger moduli space of SO(3)-monopoles.
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Dirac operator

Seiberg-Witten equations
Seiberg-Witten theory SW moduli space
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SW invariants (b, = 1)
Kahler surfaces ~

Poincaré invariants

Relation to Donaldson theory

> (Mochizuki) In case X is a projective complex surface

ngap ka/ K)%,E,ﬁ,a)SW(E),

where fi ;(—)'s are (non-explicit) universal polynomials. This formula is
obtained by the sheaf theoretic approach to Donaldson theory. A master
moduli space is constructed equipped with a C*-action whose fixed locus is a
union of moduli space of rank 2 semistable sheaves and products of
Seiberg-Witten moduli space and Hilbert schemes of points on X. Mochizuki's
formula is then an application of the (virtual) Atiyah-Bott localization formula.
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Seiberg-Witten theory

Idson theory

> (Mochizuki) In case X is a projective complex surface

ngcvp ka/ K)%,E,ﬁ,a)SW(E),

where fi ;(—)'s are (non-explicit) universal polynomials. This formula is
obtained by the sheaf theoretic approach to Donaldson theory. A master
moduli space is constructed equipped with a C*-action whose fixed locus is a
union of moduli space of rank 2 semistable sheaves and products of
Seiberg-Witten moduli space and Hilbert schemes of points on X. Mochizuki's
formula is then an application of the (virtual) Atiyah-Bott localization formula.

> (Gottsche-Yoshioka-Nakajima) gave an interpretation of f; ;(—)'s in terms
of the invariants of Nekarsov's framed moduli spaces of torsion free sheaves on
P2, which are “deformed partition function for the N = 2 SUSY gauge theory
with a single fundamental matter”. These are in turn shown to be given by
certain period integrals over Seiberg-Witten curves, which can be written as
the residue of some differential forms. A subtle analysis of these around the
poles leads to a proof of Witten's formula for projective surfaces. This
approach is very similar to their approach to the wall-crossing problem
discussed in the next Section.
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» Recall Donaldson invariants are defined by the moduli space of ASD
connections on a principal SU(2)- or SO(3)-bundle on a closed oriented
smooth 4-manifold X. ASD requirement depends on the choice of a
Riemannian metric g. For generic g there are no reducible ASD connections
and the moduli spaces are smooth manifolds.
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» Recall Donaldson invariants are defined by the moduli space of ASD
connections on a principal SU(2)- or SO(3)-bundle on a closed oriented
smooth 4-manifold X. ASD requirement depends on the choice of a
Riemannian metric g. For generic g there are no reducible ASD connections
and the moduli spaces are smooth manifolds.

> In the case b™(X) > 1, two generic metrics can be connected by a path and as
a result Donaldson invariants are independent of the choice of g, and hence
they are indeed the invariants of the differential structures.
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» Recall Donaldson invariants are defined by the moduli space of ASD
connections on a principal SU(2)- or SO(3)-bundle on a closed oriented
smooth 4-manifold X. ASD requirement depends on the choice of a
Riemannian metric g. For generic g there are no reducible ASD connections
and the moduli spaces are smooth manifolds.

> In the case b™(X) > 1, two generic metrics can be connected by a path and as
a result Donaldson invariants are independent of the choice of g, and hence
they are indeed the invariants of the differential structures.

> In the case b™(X) = 1, non-generic metrics form a real codimension 1 subset
in the space of Riemannian metrics, called the walls, and so two generic
metrics cannot be connected by a path in general. In this case there is a
chamber structure on the period domain C, which is a connected component
of the positive cone in H?(X,R). Donaldson invariants remain constant only
when the period w(g)™ stays in a chamber.
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» Recall Donaldson invariants are defined by the moduli space of ASD
connections on a principal SU(2)- or SO(3)-bundle on a closed oriented
smooth 4-manifold X. ASD requirement depends on the choice of a
Riemannian metric g. For generic g there are no reducible ASD connections
and the moduli spaces are smooth manifolds.

In the case b™(X) > 1, two generic metrics can be connected by a path and as
a result Donaldson invariants are independent of the choice of g, and hence
they are indeed the invariants of the differential structures.

In the case b™(X) = 1, non-generic metrics form a real codimension 1 subset
in the space of Riemannian metrics, called the walls, and so two generic
metrics cannot be connected by a path in general. In this case there is a
chamber structure on the period domain C, which is a connected component
of the positive cone in H?(X,R). Donaldson invariants remain constant only
when the period w(g)™ stays in a chamber.

The wall-crossing terms are the differences of Donaldson invariants when the
metric moves to another chamber by passing through a wall.
Kotschick-Morgan conjectured a polynomiality property for the
wall-crossing terms.
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» Recall Donaldson invariants are defined by the moduli space of ASD
connections on a principal SU(2)- or SO(3)-bundle on a closed oriented
smooth 4-manifold X. ASD requirement depends on the choice of a
Riemannian metric g. For generic g there are no reducible ASD connections
and the moduli spaces are smooth manifolds.

In the case b™(X) > 1, two generic metrics can be connected by a path and as
a result Donaldson invariants are independent of the choice of g, and hence
they are indeed the invariants of the differential structures.

In the case b™(X) = 1, non-generic metrics form a real codimension 1 subset
in the space of Riemannian metrics, called the walls, and so two generic
metrics cannot be connected by a path in general. In this case there is a
chamber structure on the period domain C, which is a connected component
of the positive cone in H?(X,R). Donaldson invariants remain constant only
when the period w(g)™ stays in a chamber.

The wall-crossing terms are the differences of Donaldson invariants when the
metric moves to another chamber by passing through a wall.
Kotschick-Morgan conjectured a polynomiality property for the
wall-crossing terms.

Moore-Witten derived a wall-crossing formula based on Seiberg-Witten
ansatz of the N = 2 supersymmetric Yang-Mills theory on R*. Modular forms
appear in their wall-crossing terms due to the family of elliptic curves
parameterized by the u-plane. This argument has not be mathematically
justified yet. We will discuss another approach introduced by Nekrasov.
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» Suppose b™(X) = 1. Any 0 # £ € H*(X,Z) determines a wall
W¢:={xeC|x-&=0}
For c; € H*(X,Z) and d € Z if £ + ¢ is divisible by 2 in H?(X,Z) and also
d 4+ 3+ £2 > 0 then W is called a wall of type (ci,d). If only the first
condition is satisfied W¢ is called a wall of type ¢.
The chambers of (ci, d) are the connected components of the complement of
all the walls of type (c1,d) in C. The Donaldson invariant chhd(oz”, p®) only
depends on the chamber of w(g)™.
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> Suppose b™(X) = 1. Any 0 # £ € H*(X,Z) determines a wall
W¢:={xeC|x-&=0}
For c; € H*(X,Z) and d € Z if £ + ¢ is divisible by 2 in H?(X,Z) and also
d 4+ 3+ £2 > 0 then W is called a wall of type (ci,d). If only the first
condition is satisfied W¢ is called a wall of type ¢.

The chambers of (ci, d) are the connected components of the complement of
all the walls of type (c1,d) in C. The Donaldson invariant chhd(oz”, p®) only
depends on the chamber of w(g)™.

> If C. are two chambers of type (¢, d) and g are Riemannian metrics with

w(gs)" € Cy then
DE (", p°) — D& (a", p*) ZAéd a”, p°)

where the sum is over all £ of type (c1, d) satisfying £ - C, > 0> ¢ - C_.
Note: No dependence of the right hand side on ¢;. This is part of KM

conjecture.
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> Suppose b™(X) = 1. Any 0 # £ € H*(X,Z) determines a wall
W¢:={xeC|x-&=0}
For c; € H*(X,Z) and d € Z if £ + ¢ is divisible by 2 in H?(X,Z) and also
d 4+ 3+ £2 > 0 then W is called a wall of type (ci,d). If only the first
condition is satisfied W¢ is called a wall of type ¢.
The chambers of (ci, d) are the connected components of the complement of
all the walls of type (c1,d) in C. The Donaldson invariant chhd(oz”, p®) only

depends on the chamber of w(g)™.

> If C. are two chambers of type (¢, d) and g are Riemannian metrics with
w(gs)" € Cy then

DE (", p°) — D& (a", p*) ZAéd a”, p°)

where the sum is over all £ of type (c1, d) satisfying £ - C, > 0> ¢ - C_.
Note: No dependence of the right hand side on ¢;. This is part of KM

conjecture.

> Kotschick-Morgan conjectured that the wall-crossing terms A¢ 4(—, —) are
polynomials in <§, —> and Q(—, —) with coefficients depending only on &
and the homotopy type of X.

Amin Gholampour Introduction to Donaldson and Seiberg-Witten invariants



> Suppose b™(X) = 1. Any 0 # £ € H*(X,Z) determines a wall
W¢:={xeC|x-&=0}
For c; € H*(X,Z) and d € Z if £ + ¢ is divisible by 2 in H?(X,Z) and also
d 4+ 3+ £2 > 0 then W is called a wall of type (ci,d). If only the first
condition is satisfied W¢ is called a wall of type ¢.
The chambers of (ci, d) are the connected components of the complement of
all the walls of type (c1,d) in C. The Donaldson invariant chhd(a”,pb) only
depends on the chamber of w(g)™.

> If C. are two chambers of type (¢, d) and g are Riemannian metrics with
w(gs)" € Cy then

DE (", p°) — D& (a", p*) ZAéd a”, p°)

where the sum is over all £ of type (c1, d) satisfying £ - C, > 0> ¢ - C_.
Note: No dependence of the right hand side on ¢;. This is part of KM
conjecture.

> Kotschick-Morgan conjectured that the wall-crossing terms A¢ 4(—, —) are
polynomials in <§, —> and Q(—, —) with coefficients depending only on &
and the homotopy type of X.

> From now on we assume X is a smooth projective surface and H is an ample
divisor on X. The cohomology class of H is represented by w(g)™ when g is
the Fubini-Study metric associated to H.
As we have seen, the Donaldson invariant Dg,d(a”, p®) can be computed by
the moduli space My(c, d) of rank 2 semistable torsion free sheaves E with
c(E) = ¢y and 4y(E) — c1(E)> =3 =d.
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Wall-crossing terms
Wall-crossing in Donaldson theory Toric surfaces
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Generalization to non-toric surfaces

> Let £ < IP? be the line at infinity, and for any integer n let M(n) be the moduli
space of pairs (E, ¢), where E is a rank 2 torsion free sheaf on IP? with
c2(E) = n, which is a vector bundle in a neighborhood of ¢, and ¢: E|, — O?

is an isomorphism.
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> Let £ < IP? be the line at infinity, and for any integer n let M(n) be the moduli
space of pairs (E, ¢), where E is a rank 2 torsion free sheaf on IP? with
c2(E) = n, which is a vector bundle in a neighborhood of ¢, and ¢: E|, — O?
is an isomorphism.

> M(n), known as a moduli space of instantons, is a nonsingular quasi-projective
variety of dimension 4n.
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> Let £ < P? be the line at infinity, and for any integer n let M(n) be the moduli
space of pairs (E, ¢), where E is a rank 2 torsion free sheaf on IP? with
c2(E) = n, which is a vector bundle in a neighborhood of ¢, and ¢: E|, — O?
is an isomorphism.

> M(n), known as a moduli space of instantons, is a nonsingular quasi-projective
variety of dimension 4n.

»LetT=C?2and T =T x C". M(n) is naturally equipped with a T-action in
which the action of (t;, t,) € I is induced by its action on P? and that of

e € C* (the last factor) is induced by its diagonal action ( g e(_)l ) on O7.
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> Let £ < P? be the line at infinity, and for any integer n let M(n) be the moduli
space of pairs (E, ¢), where E is a rank 2 torsion free sheaf on IP? with

c2(E) = n, which is a vector bundle in a neighborhood of ¢, and ¢: E|, — O?
is an isomorphism.

M(n), known as a moduli space of instantons, is a nonsingular quasi-projective
variety of dimension 4n.

let T =C?2and T =T x C". M(n) is naturally equipped with a T-action in
which the action of (t;, t,) € I is induced by its action on P? and that of

e € C* (the last factor) is induced by its diagonal action ( g e(_)l ) on O7.

~

The fixed point set M(n) " is the set of (E, @) = (Iz,, $1) ® (Iz,, ¢2), where Iz,
are [-fixed ideals of points (0-dimensional subschemes) in C? = P?\/ such that
len(Z1) + len(Z,) = n, and ¢; is an isomorphism /7|, with i-th factor of OZ.
eg. n=7, 1z = (x* xy,y?) and Iz, = (x*,y?).
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> Let £ < P? be the line at infinity, and for any integer n let M(n) be the moduli
space of pairs (E, ¢), where E is a rank 2 torsion free sheaf on IP? with
c2(E) = n, which is a vector bundle in a neighborhood of ¢, and ¢: E|, — O?
is an isomorphism.

> M(n), known as a moduli space of instantons, is a nonsingular quasi-projective
variety of dimension 4n.

»LetT=C2and T =T x C". M(n) is naturally equipped with a T-action in
which the action of (t;, t,) € I is induced by its action on P? and that of

e € C* (the last factor) is induced by its diagonal action ( g e(_)l ) on O7.

» The fixed point set M(n)7 is the set of (E, ¢) = (Iz,, ¢1) @® (Iz,, ¢2), where Iz
are [-fixed ideals of points (0-dimensional subschemes) in C? = P?\/ such that
len(Z1) + len(Z,) = n, and ¢; is an isomorphism /7|, with i-th factor of OZ.
eg. n=7, 1z = (x* xy,y?) and Iz, = (x*,y?).

> There is a bijection between M(n)" and the set of pairs of Young diagrams

—

Y = (Y1, Y2) such that that |Y;| + |Y2| = n.
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> Notation. For o, 5 € {0,1} denote the T-character (resp. equivariant Euler
class) of Ext!(l,, Iz,(—0)) by N 5(t1, t2, €) (resp. notﬁ(.Sl,SQ, a)). Here,
(t1, tr, e) = (e, %2, e?).

v v 2s1+s5—a
_ _ Yy 1+ 9
Eg If N y(ti, 1, €) = ire™! — 1 3 then n) 4(s1, %,a) =

—352
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> Notation. For o, 5 € {0,1} denote the T-character (resp. equivariant Euler
class) of Ext!(l,, Iz,(—0)) by N 5(t1, t2, €) (resp. notﬁ(.Sl,SQ, a)). Here,
(t1, tr, e) = (e, %2, e?).

v v 2s1+s5—a
_ _ Yy 1+ 9
Eg If N y(ti, 1, €) = ire™! — 1 3 then n) 4(s1, %,a) =

—352

» The instanton part of Nekrasov partition function is defined as

: /\4|\7|
75y, 55,a,A) = Y /\4"J R SE— e Q(s1, 52, 3)[[A]].
Mo

Y
n=0

Yy Ha,ﬁzl na,ﬁ(‘sl? 52, a)

Amin Gholampour Introduction to Donaldson and Seiberg-Witten invariants



Recap

Nekrasov partition function
Nekrasov conjecture
Hilbert scheme of points
Wall-crossing terms

Wall-crossing in Donaldson theory Toric surfaces
Modular forms
Generalization to non-toric surfaces

> Notation. For o, 5 € {0,1} denote the T-character (resp. equivariant Euler
class) of Ext!(l,, Iz,(—0)) by N ;(t1, t2,€) (resp. n) 4(s1,52,a)). Here,
(t1, tr, e) = (e, %2, e?).

v v 2s1+s5—a
_ _ Yy 1+ 9
Eg If N y(ti, 1, €) = ire™! — 1 3 then n) 4(s1, %,a) =

—352
> The instanton part of Nekrasov partition function is defined as
inst 4n /\4|?|
Z <51752aa7/\> = Z/\ J 1 :Z 5 v €Q<51752aa)[[/\]]'
n=0 M(n) v L p1nd (51,2, a)

> For variables 7 := (7,),>1 a more general version of the partition function
Z"™(s1, s, a,\, T) is defined by introducing some extra insertions

EY (s1,s,a,T) in the definition above. In particular,

7" (s, 5, a,/\,6) = 7Z"™Y(s1, 55, a, ).
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> Notation. For o, 5 € {0,1} denote the T-character (resp. equivariant Euler
class) of Ext!(l,, Iz,(—0)) by N ;(t1, t2,€) (resp. n) 4(s1,52,a)). Here,

(t1, tr, e) = (e, %2, e?).
2s1+ s — a

% - - Y
Eg If N y(ti, 1, €) = ire™! — 1 3 then n) 4(s1, %,a) =

—352
> The instanton part of Nekrasov partition function is defined as
inst 4n /\4|?|
Z <51752aa7/\> = Z/\ J 1 :Z 5 v €Q<51752aa)[[/\]]'
n=0 M(n) v L p1nd (51,2, a)

> For variables 7 := (7,),>1 a more general version of the partition function
Z"™(s1, s, a,\, T) is defined by introducing some extra insertions
EY (s1,s,a,T) in the definition above. In particular,

7" (s, 5, a,/\,6) = 7Z"™Y(s1, 55, a, ).
> As a power series in A, Z'™t starts with 1. Define

F™(s;, 5, a,N\,7) := log Z™(s1, 5, a,\, 7).
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. . 1 Cn n—2
» Notation. Define ¢, by (e~ ) (o2t —1) ngo—!t and

(= 2x%log(x/A) + 2x2) + L2y log(x/A
5152( % og(x/N) + < ) + 295 ( x log(x/N\) + x)
2 2 > 2—n
s;+ 55 + 3515 ChX
— | A .
155 oM+ 23 n(n—1)(n—2)

751,52 (X7 /\) =
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. . 1 Cn n—2
» Notation. Define ¢, by (e~ ) (o2t —1) ngo—!t and

3 »

1 1

’751,52 (X7 /\) = 515 2 4

25152
512 + 522 + 3515 log(x/A) + i c, x> "
— og(x .
12515, s Zn(n—1)(n—2)

> The perturbation part of Nekrasov partition function is defined as (the

exponential of )
Fpert<517 52,4, /\) = _fysl,52<237 /\) — W51’52<_2a, /\)

FPe is a Laurent series in si, s, whose coefficients are multi-valued

meromorphic functions in a, A.
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. . 1 Cn n—2
» Notation. Define ¢, by (e~ ) (o2t —1) ngo—!t and

3 »

1 1

’751,52 (X7 /\) = 515 2 4

25152
512 + 522 + 3515 log(x/A) + i c, x> "
— og(x .
12515, s Zn(n—1)(n—2)

> The perturbation part of Nekrasov partition function is defined as (the

exponential of )
Fpert<517 52,4, /\) = _fysl,52<237 /\) — W51’52<_2a, /\)

FPe is a Laurent series in si, s, whose coefficients are multi-valued
meromorphic functions in a, A.
> Define F(s1,s,a,\,T) := FP*(sy, 55, a,\) + F™(s1, 5, a,\, 7).
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» Define a family of elliptic curves C,: y? = (z° — u)? — 4A\* parameterized by
u € C, called the u-plane. The parameter A is called the renormalization scale.
When A = 0 the theory goes to the classical limit. C, is singular for u = +2A.
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» Define a family of elliptic curves C,: y? = (z° — u)? — 4A\* parameterized by
u € C, called the u-plane. The parameter A is called the renormalization scale.
When A = 0 the theory goes to the classical limit. C, is singular for u = +2A.

> The Seiberg-Witten differential form is a meromorphic differential on C, given

by 2 2
dS = 227 (u — )dz.
Ty
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» Define a family of elliptic curves C,: y? = (z° — u)? — 4A\* parameterized by
u € C, called the u-plane. The parameter A is called the renormalization scale.
When A = 0 the theory goes to the classical limit. C, is singular for u = +2A.

> The Seiberg-Witten differential form is a meromorphic differential on C, given

by
20, 2
dS := 22" (u — 2 )dz.
Ty

> For suitable cycles A, B on C, let a:= {, dS and a” := 27i {, dS. The period
1 0aP

of C,is 7 := —_i. Here, u and aP are considered as functions of a and A.
27 Oa
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2 — u)? — 4\* parameterized by

> Define a family of elliptic curves C,: y° = (z
u € C, called the u-plane. The parameter A is called the renormalization scale.

When A = 0 the theory goes to the classical limit. C, is singular for u = +2A.

> The Seiberg-Witten differential form is a meromorphic differential on C, given

by

dS = 227 — Z2)dz.
ny
> For suitable cycles A, B on C, let a:= {,dS and a” := 2i {; dS. The period
of C,isT:= %?—:. Here, u and aP are considered as functions of a and A.
> The SW prepotential Fy is a locally defined function on the u-plane satisfying
aP = —@. After a suitable choice of branch of log it can be viewed as a

a
holomorphic function of a, A on some domain.
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2 — u)? — 4\* parameterized by

> Define a family of elliptic curves C,: y° = (z
u € C, called the u-plane. The parameter A is called the renormalization scale.

When A = 0 the theory goes to the classical limit. C, is singular for u = +2A.

> The Seiberg-Witten differential form is a meromorphic differential on C, given

by

dS = 227 — Z2)dz.
ny
> For suitable cycles A, B on C, let a:= {,dS and a” := 2i {; dS. The period
of C,isT:= %?—:. Here, u and aP are considered as functions of a and A.
> The SW prepotential Fy is a locally defined function on the u-plane satisfying
aP = —@. After a suitable choice of branch of log it can be viewed as a

a
holomorphic function of a, A on some domain.

> Nekrasov conjecture: s1s,F (s, s, a, \) is regular at s; = 0 = s, and moreover

5152F<517527a7 /\)|51:0252 - f0<a7 /\)

This is known to be a natural relation from a physical point of view and is
similar to the mirror symmetry in which Nakrasov's partition function is a
counterpart of GW invariants on the symplectic side and the SW prepotential
is on the complex side. This conjecture is proven by Nakajima-Yoshioka,
Nekrasov-Okounkov, and Braverman-Etingof by different methods.

> The idea of the first proof is to consider a similar partition functions (with
insertions) via the framed moduli spaces of rank 2 torsion free sheaves on the
blow up of P2, and prove a blow up formula relating it to Nekarsov's partition
function. For some choices of insertions the partition functions of the blowup
are shown to vanish. These give a differential equation satisfied by Nekrasov's
partition function, which turns out to essentially be the same differential
equation satisfied by SW prepotential.
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> For n > 0 let X" denote the Hilbert scheme of n points on X. (0-dimensional
subschemes Z < X such that len(Z) = n).
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> For n > 0 let X" denote the Hilbert scheme of n points on X. (0-dimensional
subschemes Z < X such that len(Z) = n).

» X" is a 2n-dimensional nonsingular variety, and

Tin 7 = Hom(lz,0z) = Ext' (07, 07).
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> For n > 0 let X!" denote the Hilbert scheme of n points on X. (0O-dimensional
subschemes Z < X such that len(Z) = n).

» XI7l'is a 2n-dimensional nonsingular variety, and
TX[”],Z = Hom(lz, Oz) = Eth(Oz, Oz)

> (Ellingsrud-Gottsche-Lehn) For any partition A of 2n there is a universal
polynomial Py € Q[z1, 2] such that cy(X") = Py(ci(X), (X)) for every
smooth projective surface X.
The proof of this is based on an induction scheme technique that expresses
certain intersection numbers over X!”! in terms of some intersection numbers

over X1 « X.
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> For n > 0 let X!" denote the Hilbert scheme of n points on X. (0O-dimensional
subschemes Z < X such that len(Z) = n).

» XI7l'is a 2n-dimensional nonsingular variety, and
TX[”],Z = Hom(lz, Oz) = Eth(Oz, Oz)

> (Ellingsrud-Gottsche-Lehn) For any partition A of 2n there is a universal
polynomial Py € Q[z1, 2] such that cy(X") = Py(ci(X), (X)) for every
smooth projective surface X.

The proof of this is based on an induction scheme technique that expresses
certain intersection numbers over X!"! in terms of some intersection numbers
over X" x X,

» The cobordism class of a stably complex manifold is completely determined by
the collection of its Chern numbers. As a corollary of the above reuslt, the
class of X" in Q, the complex cobordism ring with rational coefficients,
depends only on the class [X] € 2.
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> For n > 0 let X!" denote the Hilbert scheme of n points on X. (0O-dimensional
subschemes Z < X such that len(Z) = n).

X!"l'is a 2n-dimensional nonsingular variety, and
Txim 7 = Hom(lz,O7) =~ Ext}(Oz, Oy).

(Ellingsrud-Gottsche-Lehn) For any partition A of 2n there is a universal
polynomial Py € Q[z1, 2] such that cy(X") = Py(ci(X), (X)) for every
smooth projective surface X.

The proof of this is based on an induction scheme technique that expresses
certain intersection numbers over X!"! in terms of some intersection numbers
over X" x X,

The cobordism class of a stably complex manifold is completely determined by
the collection of its Chern numbers. As a corollary of the above reuslt, the
class of X" in Q, the complex cobordism ring with rational coefficients,
depends only on the class [X] € 2.

Milnor showed that €2 is a polynomial ring freely generated by the cobordism
classes [IP'] € Q; for i € N.
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> For n > 0 let X!" denote the Hilbert scheme of n points on X. (0O-dimensional
subschemes Z < X such that len(Z) = n).

» XI7l'is a 2n-dimensional nonsingular variety, and
TX[”],Z = Hom(lz, Oz) = Eth(Oz, Oz)

> (Ellingsrud-Gottsche-Lehn) For any partition A of 2n there is a universal
polynomial Py € Q[z1, 2] such that cy(X") = Py(ci(X), (X)) for every
smooth projective surface X.

The proof of this is based on an induction scheme technique that expresses
certain intersection numbers over X!"! in terms of some intersection numbers
over X" x X,

» The cobordism class of a stably complex manifold is completely determined by
the collection of its Chern numbers. As a corollary of the above reuslt, the
class of X" in Q, the complex cobordism ring with rational coefficients,
depends only on the class [X] € 2.

> Milnor showed that 2 is a polynomial ring freely generated by the cobordism
classes [IP'] € Q; for i € N.

» Application: The formula

() - e (3 ) 27

(and similarly for the Poincaré polynomials) can be proven by noting that both

sides are multiplicative in [ X] and hence reducing the proof to the cases
X = P? and P! x P!, and then applying toric techniques.

Introduction to Donaldson and Seiberg-Witten invariants



Recap

Nekrasov partition function
Nekrasov conjecture
Hilbert scheme of points

Wall-crossing terms
Wall-crossing in Donaldson theory Toric surfaces
Modular forms
Generalization to non-toric surfaces

> Notation. Let by, ..., bs be a homogeneous basis of H.(X). For p > 1, let
77, ..., 70 be indeterminates, put a, := >, _; gl bk7} with g} € Q and define
a generating series for Donaldson invariants

Dier(N o) = A | el o),

p=1 d=0 p=1

where 11,(—) := (=1)"ch,;1(E)/— € H*>7*(M"(cy, d)).
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> Notation. Let by, ..., bs be a homogeneous basis of H.(X). For p > 1, let
77, ..., 70 be indeterminates, put a, := >, _; gl bk7} with g} € Q and define
a generating series for Donaldson invariants

exp Z a,)) Z N JMH - eXP(Z pp(cp)),

p=1 d=0 p=>1
where 11,(—) := (=1)"ch,;1(E)/— € H*>7*(M"(cy, d)).
» For a type ¢; class 0 # & € H2(X,Z) the wall W< is called good if there is an
ample divisor in WS, and D + Ky is not effective for any divisor D with

WP — we.
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> Notation. Let by, ..., bs be a homogeneous basis of H.(X). For p > 1, let
77, ..., 70 be indeterminates, put a, := >, _; gl bk7} with g} € Q and define

a generating series for Donaldson invariants

Dier(N o) = A | el o),

p=1 d=0 p=>1
where 11,(—) := (=1)"ch,;1(E)/— € H*>7*(M"(cy, d)).
» For a type ¢; class 0 # & € H2(X,Z) the wall W< is called good if there is an
ample divisor in WS, and D + Ky is not effective for any divisor D with
Wb = we,

> Notation. Xo := X [[X and X\ =] ., X[ x xIm,

n+m=/
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> Notation. Let by, ..., bs be a homogeneous basis of H.(X). For p > 1, let

77, ..., 70 be indeterminates, put a, := >, _; gl bk7} with g} € Q and define

a generating series for Donaldson invariants

exp Z a,)) Z N JMH - eXP(Z pp(cp)),

p=1 d=0 p=1
where 1,(—) := (1)’ chy41(E)/— € H**27*(M"(cy, d)).
> For a type ¢; class 0 # & € H?(X,Z) the wall W*¢ is called good if there is an
ample divisor in WS, and D + Ky is not effective for any divisor D with
Wb = we,
» Notation. X, := X [[ X and X} = .. _, X[ x xm

> Suppose £ is good. There are vector bundles A, 1 on XQ[/] with fibers

Ag N1z, 1) = Ext' Iz 12(€)),  Agiliz, 15,) 7= Ext'(Iz;, 17(=€)).
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> Notation. Let by, ..., bs be a homogeneous basis of H.(X). For p > 1, let

77, ..., 70 be indeterminates, put a, := >, _; gl bk7} with g} € Q and define

a generating series for Donaldson invariants

Hep(Va)i= DA [ en( Y lay)

p=1 d=0 MH (cy,d) p=1
where 11,(—) := (=1)"ch,;1(E)/— € H*>7*(M"(cy, d)).
> For a type ¢; class 0 # & € H?(X,Z) the wall W*¢ is called good if there is an
ample divisor in WS, and D + Ky is not effective for any divisor D with
WP = we.
> Notation. X, := X[ ] X and XQ[/] =11, X" x xlml,
> Suppose £ is good. There are vector bundles A, 1 on XQ[/] with fibers

Aﬁ—’ (Iz:1z,) - Eth(/ZQ7 lZl(£))? 'AEJr‘ (Iz:1z,) - EXt1</Z17 IZ2<_£))'

» Wall-crossing terms.

See(exp(Y] ap)) 1= D AHE 300

p=1 =0
| f exp (Zp>1(—1)p[ch(21)e£__ft + ch(Ig)e%_f]pH/ozp)
XU ct(Ae_)ct(Ae )

)
e AE=3OIQ[t, e TH[[A, ()]

where Z; are the pullbacks of the universal ideal sheaves to X x X["], and
1 1 1
(E) = trZ, 1c,(E)%H*(_)[[t_l]] for any rank r vector bundle E.
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» Taking the coefficient of ¢!

de(exp( ) @) == [de.e(exp( D )], 1 € QIIA, (7)]):

p=1 p=1
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» Taking the coefficient of ¢!

de(exp( ) @) == [de.e(exp( D )], 1 € QIIA, (7)]):

p=1 p=1

» Theorem 1 (Gottsche-Yoshioka-Nakajima) Suppose X is simply
connected and pg(X) = 0. Let H_, H, be ample divisors on X, which do not
lie on a wall of type (c1, d) for any d > 0. Let B, be the set of all classes & of
type ¢t with - H, > 0 > &- H_. Assume that all classes in B, are good. Then

Dg+ (eXP(Z ap)) — D(;/_ (eXP(Z ay)) = Z 5§(exp(2 ap)).

p=1 p=1 (eBy p=1
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» Taking the coefficient of ¢t*

de(exp( D, @) = [deelexp(D ] ap))], 1 € QA (T))]]:
p=1 p=1
> Theorem 1 (Gottsche-Yoshioka-Nakajima) Suppose X is simply
connected and pg(X) = 0. Let H_, H, be ample divisors on X, which do not
lie on a wall of type (c1, d) for any d > 0. Let B, be the set of all classes & of
type ¢t with - H, > 0 > &- H_. Assume that all classes in B, are good. Then

Dg+ (eXP(Z ap)) — Dcfll_ (exp(Z ay)) = Z 5§(exp(2 ap)).
p=1 p=1 (eBy p=1
> Remark. This formula is shown to be compatible with Fintushel-Stern'’s
blowup formula and so it suffices to be proven after blowing up X at
sufficiently many points. Hence one may assume M"*(c;, d) is of expected
dimension without loss of generality. The key idea of the proof is that passing
the wall W¢ the moduli space changes by replacing certain sheaves lying in
extensions of ideal sheaves of zero-dimensional schemes twisted by line bundles
by extensions the other way round:

0=z (§) > E—lz,—0, 0 lg(—§) — E' — Iz — 0.
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» Taking the coefficient of ¢t*

de(exp( D, @) = [deelexp(D ] ap))], 1 € QA (T))]]:
p=1 p=1
> Theorem 1 (Gottsche-Yoshioka-Nakajima) Suppose X is simply
connected and pg(X) = 0. Let H_, H, be ample divisors on X, which do not
lie on a wall of type (c1, d) for any d > 0. Let B, be the set of all classes & of
type ¢t with - H, > 0 > &- H_. Assume that all classes in B, are good. Then

Dg+ (eXP(Z ap)) — Dcfll_ (exp(Z ay)) = Z 5§(exp(2 ap)).
p=1 p=1 (eBy p=1
> Remark. This formula is shown to be compatible with Fintushel-Stern'’s
blowup formula and so it suffices to be proven after blowing up X at
sufficiently many points. Hence one may assume M"*(c;, d) is of expected
dimension without loss of generality. The key idea of the proof is that passing
the wall W¢ the moduli space changes by replacing certain sheaves lying in
extensions of ideal sheaves of zero-dimensional schemes twisted by line bundles
by extensions the other way round:

0=z (§) > E—lz,—0, 0 lg(—§) — E' — Iz — 0.

» Mochizuki proves the same result for general walls using virtual fundamental
classes and virtual localization. When £ is not good A¢ . are not necessarily
vector bundles and are replaced by the corresponding classes in K-theory.
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» Suppose that Y is a smooth projective toric surface e.g. Y = IP?. This means
that Y contains [ = C*2 as an open subset and the action of [ extends to Y.
There are finitely many fixed points py, ..., py, where x is the Euler number of
Y. Let w(x;), w(y;) be the weights of the -action on Ty ..

Introduction to Donaldson and Seiberg-Witten invariants
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» Suppose that Y is a smooth projective toric surface e.g. Y = P2. This means
that Y contains [ = C*2 as an open subset and the action of [ extends to Y.
There are finitely many fixed points py, ..., py, where x is the Euler number of
Y. Let w(x;), w(y;) be the weights of the -action on Ty ..

> One may define equivariant Donaldson invariants of Y for the equivariant lifts
of (co)homology classes by means of the moduli space of equivariant
semistable sheaves. Denote the generating series and wall-crossing terms by
D!(—) and d¢¢(—), respectively. They specialize to D!/(—) and d¢¢(—) by
setting s; = 0 = 5.
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» Suppose that Y is a smooth projective toric surface e.g. Y = P2. This means
that Y contains [ = C*2 as an open subset and the action of [ extends to Y.
There are finitely many fixed points py, ..., py, where x is the Euler number of
Y. Let w(x;), w(y;) be the weights of the -action on Ty ..

> One may define equivariant Donaldson invariants of Y for the equivariant lifts
of (co)homology classes by means of the moduli space of equivariant
semistable sheaves. Denote the generating series and wall-crossing terms by
Eg(—) and gg’t(—), respectively. They specialize to D!/(—) and d¢,¢(—) by
setting s = 0 = ).

> The same proof shows that Theorem 1 remains true for 5?1'(—) and gg(—) and
§+, where §+ consists of one equivariant lift of £ for each class of type ¢; with

E-H, >0>¢-H._.
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» Suppose that Y is a smooth projective toric surface e.g. Y = P2. This means

that Y contains [ = C*2 as an open subset and the action of [ extends to Y.
There are finitely many fixed points py, ..., py, where x is the Euler number of
Y. Let w(x;), w(y;) be the weights of the -action on Ty ..

> One may define equivariant Donaldson invariants of Y for the equivariant lifts
of (co)homology classes by means of the moduli space of equivariant
semistable sheaves. Denote the generating series and wall-crossing terms by
Eg(—) and gg’t(—), respectively. They specialize to D!/(—) and d¢,¢(—) by
setting s; = 0 = 5.

> The same proof shows that Theorem 1 remains true for 5?1'(—) and gg(—) and

§+, where §+ consists of one equivariant lift of £ for each class of type ¢; with
E-H, >0>¢-H._.
> Theorem 2 (Gottsche-Yoshioka-Nakajima) For Y toric

Se.c(exp(>. ) =

%GXP (Z F(w(xi), w(yi), t_Tg‘pi’ A (1) aylp),))

as elements of the ring A5 3Q[s1, 5] ((t~))[[A, (T)]]-
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» For 7 € H let g := > and define the theta functions

900 Zq n?/2 901( ) Z( 1)n n2/2 910 Zq (n+1) 2/8.

nez, nez nez
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» For 7 € H let g := > and define the theta functions
2 2 2
900 Z q /2 901( ) Z( 1)n n /2 910 Z q (n+1) /8.
nez nez nez
> Normalized Eisenstein series of weight 2: Ey(1) :=1—24 ,01(n)q".

Define T = ~(%y2g _ Y

24(d ’ 6
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» For 7 € H let g := > and define the theta functions

900 Zq2/2 (901 ) Z( 1)n n2/2 910 an+12/8

neZ neZz neZz,
» Normalized Eisenstein series of weight 2: Ey(1) :==1—24) ,01(n)q".
1 du
Define T := 24(d )2 Ey — 6
. . . —1 0°Fy
» Going back to the u-plane, the period of C, is given by 7 = 2—(5 72 and
mi(da
52
q= exp(—(af)g). Then it can be shown
a
9 Q da 000@10 3900910
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> For 7 € H let g := €®™'7 and define the theta functions

Ooo(T Zq2/2 Oor () == > (-1)"q "2 Guo(r = > g s,

nez, nez nez

> Normalized Eisenstein series of weight 2: Ey(1) :=1—24% . , 01(n)q".

1 du u
Define T := E, — —.
eHne 24(d ? 6
. . .y —1 °F
» Going back to the u-plane, the period of C, is given by 7 = — and
27i (0a)?
&2
q= exp(—(af)g). Then it can be shown
9 Q da 000@10 3900910
> Theorem 3 (Gottsche-Yoshioka-Nakajima) Let £ be a good class and Y

be toric.
O¢(exp(az + px)) = if'Ky_l[A]q
where a € Hy(X,7Z) and p € Hy(X,Z) is the class of a point and
i du.3 K2
ux) (KE) o1 -

This result is proven by the localization formula using Theorem 2 and

0>

A = q_fz/8 exp (%<a, £/2)z + Talz?

Nekrasov's conjecture.
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> Theorem 4 (Gottsche-Yoshioka-Nakajima) There exists universal power
series A1, ..., Ag € Q((t71))[[A]] such that for all smooth projective surfaces
X and ¢ € Pic(X)
(—1)X(OX)+§(€_KX)/2t_§2_2X(OX)/\52+3X(OX)5§ ((exp(az + px))
= exp (A1 + & a(X) Ay + a(X)As + (X) Ay + a - EAsz
+ - a(X)Asz + a’Arz” + xAg).

The proof uses an induction scheme technique similar to that of
Ellingsrud-Gottsche-Lehn.
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> Theorem 4 (Gottsche-Yoshioka-Nakajima) There exists universal power
series A1, ..., Ag € Q((t71))[[A]] such that for all smooth projective surfaces
X and ¢ € Pic(X)

(—1)X(OX)+§(€_KX)/2t_§2_2X(OX)/\52+3X(OX)5§ ((exp(az + px))

= exp (A1 + & a(X) Ay + a(X)As + (X) Ay + a - EAsz
+ - a(X)Asz + a’Arz” + xAg).

The proof uses an induction scheme technique similar to that of
Ellingsrud-Gottsche-Lehn.

> Theorem 5 (Gottsche-Yoshioka-Nakajima) For any smooth projective
surfaces X and any £ € Pic(X)

Og,¢(exp(az + px)) =
€ d ' d

ek G u i du\ 2y (0x) 1o

I§ Kx (m eXp ($<CY, 5/2>Z + T05222 — UX) (Ka) X=X (901<X))
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> Theorem 4 (Gottsche-Yoshioka-Nakajima) There exists universal power
series A1, ..., Ag € Q((t71))[[A]] such that for all smooth projective surfaces
X and ¢ € Pic(X)

(—1)X(OX)+§(§_KX)/2t_§2_2X(OX)/\52+3X(0X)5§,t(exp(az + px))
= exp (A1 + & a(X) Ay + a(X)As + (X) Ay + a - EAsz
+ - a(X)Asz + a’Arz” + xAg).

The proof uses an induction scheme technique similar to that of
Ellingsrud-Gottsche-Lehn.

> Theorem 5 (Gottsche-Yoshioka-Nakajima) For any smooth projective
surfaces X and any £ € Pic(X)

Oc.t(exp(az + px)) =

<Ky (9 /8 du 2_2 i duy2y(0x) yo(X)
i (/\X(Ox) exp ($<a,§/2>z + Ta’z® — ux) (KE) 051" )-
» This also establishes Kotschick-Morgan conjecture for smooth projective

surfaces.
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> Theorem 4 (Gottsche-Yoshioka-Nakajima) There exists universal power
series A1, ..., Ag € Q((t71))[[A]] such that for all smooth projective surfaces
X and ¢ € Pic(X)

(—1)X(OX)+§(€_KX)/2t_§2_2X(OX)/\52+3X(0X)5§,t(exp(az + px))
= exp (A1 + & a(X) Ay + a(X)As + (X) Ay + a - EAsz
+ - a(X)Asz + a’Arz” + xAg).

The proof uses an induction scheme technique similar to that of
Ellingsrud-Gottsche-Lehn.

> Theorem 5 (Gottsche-Yoshioka-Nakajima) For any smooth projective
surfaces X and any £ € Pic(X)

Oc.t(exp(az + px)) =

<Ky (9 /8 du 2_2 i duy2y(0x) yo(X)
i (/\X(Ox) exp ($<a,§/2>z + Ta’z® — ux) (KE) 051" )-
» This also establishes Kotschick-Morgan conjecture for smooth projective

surfaces.

> Sketch of proof of Theorem 5: Substituting t = 2a, we can rewrite Theorem 4

in terms of g. For any triple (X, &, ) there exists
V(X,€,8) = (v,...,w) € QB such that
CKxq=€/8 | d

be(3) = b (o

AX©Ox) ‘A da

)QX(OX)) exp ( V,'B,')

Nl
—

for some universal power series B; € C((g/8))[[A]].

V(X, &, B) with X a toric surface and £ a good class generate Q® as a vector
space, and so B, are determined by their values for toric surfaces and good
classes.
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